[PDF]    http://dx.doi.org/10.3952/lithjphys.44101

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 5–16 (2004)


ADAPTIVE STABILIZATION OF UNSTABLE STEADY STATES OF NONLINEAR DYNAMICAL SYSTEMS
V. Pyragas and K. Pyragas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt

Received 2 October 2003

An adaptive dynamic state feedback controller for stabilizing and tracking unknown steady states of dynamical systems is considered. We prove that the steady state can never be stabilized if the system and controller as a whole has an odd number of real positive eigenvalues. For two-dimensional systems, this topological limitation states that only an unstable focus or node can be stabilized with a stable controller, and a stabilization of a saddle requires the presence of an unstable degree of freedom in a feedback loop. The use of the controller to stabilize saddles and unstable spirals is demonstrated numerically with several models: a pendulum driven with a constant torque, the Lorenz system, and an electrochemical Ni dissolution system.
Keywords: chaos, dynamical systems, adaptive control, electrochemical oscillator, basin of attraction
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks
The report presented at the 35th Lithuanian National Physics Conference, 12–14 June 2003, Vilnius, Lithuania


NETIESINIŲ DINAMINIŲ SISTEMŲ NESTABILIŲJŲ RIMTIES BŪSENŲ ADAPTYVUSIS STABILIZAVIMAS
V. Pyragas, K. Pyragas
Puslaidininkių fizikos institutas, Vilnius, Lietuva


Nagrinėtas dinaminis grįžtamojo ryšio valdiklis nežinomoms dinaminių sistemų rimties būsenoms stabilizuoti. Įrodyta, kad rimties būsena negali būti stabilizuota, jeigu sistema ir valdiklis kartu turi nelyginį realiųjų teigiamų tikrinių verčių skaičių. Antros eilės sistemoms toks topologinis ribojimas reiškia, kad stabiliuoju valdikliu galima stabilizuoti tik nestabiliąją spiralę arba nestabilųjį mazgą, o balnui stabilizuoti grįžtamojo ryšio kilpoje reikalingas papildomas nestabilusis laisvės laipsnis. Valdiklio naudingumas balnams bei nestabiliosioms spiralėms stabilizuoti yra parodytas skaitiškai keliems modeliams: svyruoklei, veikiamai jėgos momento, Lorenz’o sistemai ir elektrocheminei Ni tirpimo reakcijai.


References / Nuorodos


[1] R. Bellman, Introduction to the Mathematical Theory of Control Processes (Academic Press, New York, 1971),
http://archive.org/details/introductiontoma0002bell/page/n5/mode/2up
[2] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice (Prentice Hall, Englewood Cliffs, NJ, 1984),
http://archive.org/details/chemicalprocessc0000step
[3] E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys. Rev. Lett. 64, 1196–1199 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.1196
[4] Handbook of Chaos Control, ed. H.G. Shuster (Wiley-VCH, Weinheim, 1999),
http://dx.doi.org/10.1002/9783527622313
[5] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170, 421–428 (1992),
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[6] H. Nakajima, On analytical properties of delayed feedback control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00362-9
[7] K. Pyragas, Control of chaos via an unstable delayed feedback controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265
[8] K. Pyragas, Control of chaos via extended delay feedback, Phys. Lett. A 206, 323–330 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00654-L
[9] A. Namajūnas, K. Pyragas, and A. Tamaševičius, Stabilization of an unstable steady-state in a Mackey–Glass system, Phys. Lett. A 204, 255–262 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00480-Q
[10] N.F. Rulkov, L.S. Tsimring, and H.D.I. Abarbanel, Tracking unstable orbits in chaos using dissipative feedback control, Phys. Rev. E 50, 314–324 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.314
[11] A.S.Z. Schweinsberg and U. Dressler, Characterization and stabilization of the unstable fixed points of a frequency doubled Nd: YAG laser, Phys. Rev. E 63, 056210 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.056210
[12] K. Ogata, Modern Control Engineering (Prentice Hall, Englewood Cliffs, NJ, 1990),
http://openlibrary.org/books/OL2204569M/Modern_control_engineering
[13] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141 (1963),
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[14] M. Gorman, P.J. Widmann, and K.A. Robbins, Chaotic flow regimes in a convective loop, Phys. Rev. Lett. 52(25), 2241–2244 (1984),
http://dx.doi.org/10.1103/PhysRevLett.52.2241
[15] M. Gorman, P.J. Widmann, and K.A. Robbins, Nonlinear dynamics of a convection loop: A quantitative comparison of experiment with theory, Physica D 19(2), 255–267 (1986),
http://dx.doi.org/10.1016/0167-2789(86)90022-9
[16] D. Haim, O. Lev, L.M. Pismen, and M. Sheintuch, Modelling periodic and chaotic dynamics in anodic nickel dissolution, J. Phys. Chem. 96, 2676–2681 (1992),
http://dx.doi.org/10.1021/j100185a051
[17] K. Pyragas, V. Pyragas, I.Z. Kiss, and J.L. Hudson, Stabilizing and tracking unknown steady states of dynamical systems, Phys. Rev. Lett. 89, 244103 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.244103