[PDF]
http://dx.doi.org/10.3952/lithjphys.44101
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 5–16 (2004)
ADAPTIVE STABILIZATION OF
UNSTABLE STEADY STATES OF NONLINEAR DYNAMICAL SYSTEMS ∗
V. Pyragas and K. Pyragas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt
Received 2 October 2003
An adaptive dynamic state feedback controller
for stabilizing and tracking unknown steady states of dynamical
systems is considered. We prove that the steady state can never be
stabilized if the system and controller as a whole has an odd
number of real positive eigenvalues. For two-dimensional systems,
this topological limitation states that only an unstable focus or
node can be stabilized with a stable controller, and a
stabilization of a saddle requires the presence of an unstable
degree of freedom in a feedback loop. The use of the controller to
stabilize saddles and unstable spirals is demonstrated numerically
with several models: a pendulum driven with a constant torque, the
Lorenz system, and an electrochemical Ni dissolution system.
Keywords: chaos, dynamical systems, adaptive control,
electrochemical oscillator, basin of attraction
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks
∗ The report presented at the 35th Lithuanian National
Physics Conference, 12–14 June 2003, Vilnius, Lithuania
NETIESINIŲ DINAMINIŲ SISTEMŲ
NESTABILIŲJŲ RIMTIES BŪSENŲ ADAPTYVUSIS STABILIZAVIMAS
V. Pyragas, K. Pyragas
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Nagrinėtas dinaminis grįžtamojo ryšio valdiklis
nežinomoms dinaminių sistemų rimties būsenoms stabilizuoti.
Įrodyta, kad rimties būsena negali būti stabilizuota, jeigu
sistema ir valdiklis kartu turi nelyginį realiųjų teigiamų
tikrinių verčių skaičių. Antros eilės sistemoms toks topologinis
ribojimas reiškia, kad stabiliuoju valdikliu galima stabilizuoti
tik nestabiliąją spiralę arba nestabilųjį mazgą, o balnui
stabilizuoti grįžtamojo ryšio kilpoje reikalingas papildomas
nestabilusis laisvės laipsnis. Valdiklio naudingumas balnams bei
nestabiliosioms spiralėms stabilizuoti yra parodytas skaitiškai
keliems modeliams: svyruoklei, veikiamai jėgos momento, Lorenz’o
sistemai ir elektrocheminei Ni tirpimo reakcijai.
References / Nuorodos
[1] R. Bellman, Introduction to the Mathematical Theory of
Control Processes (Academic Press, New York, 1971),
http://archive.org/details/introductiontoma0002bell/page/n5/mode/2up
[2] G. Stephanopoulos, Chemical Process Control: An Introduction
to Theory and Practice (Prentice Hall, Englewood Cliffs, NJ,
1984),
http://archive.org/details/chemicalprocessc0000step
[3] E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys.
Rev. Lett. 64, 1196–1199 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.1196
[4] Handbook of Chaos Control, ed. H.G. Shuster (Wiley-VCH,
Weinheim, 1999),
http://dx.doi.org/10.1002/9783527622313
[5] K. Pyragas, Continuous control of chaos by self-controlling
feedback, Phys. Lett. A 170, 421–428 (1992),
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[6] H. Nakajima, On analytical properties of delayed feedback
control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00362-9
[7] K. Pyragas, Control of chaos via an unstable delayed feedback
controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265
[8] K. Pyragas, Control of chaos via extended delay feedback, Phys.
Lett. A 206, 323–330 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00654-L
[9] A. Namajūnas, K. Pyragas, and A. Tamaševičius, Stabilization of
an unstable steady-state in a Mackey–Glass system, Phys. Lett. A 204,
255–262 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00480-Q
[10] N.F. Rulkov, L.S. Tsimring, and H.D.I. Abarbanel, Tracking
unstable orbits in chaos using dissipative feedback control, Phys.
Rev. E 50, 314–324 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.314
[11] A.S.Z. Schweinsberg and U. Dressler, Characterization and
stabilization of the unstable fixed points of a frequency doubled
Nd: YAG laser, Phys. Rev. E 63, 056210 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.056210
[12] K. Ogata, Modern Control Engineering (Prentice Hall,
Englewood Cliffs, NJ, 1990),
http://openlibrary.org/books/OL2204569M/Modern_control_engineering
[13] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20,
130–141 (1963),
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[14] M. Gorman, P.J. Widmann, and K.A. Robbins, Chaotic flow regimes
in a convective loop, Phys. Rev. Lett. 52(25), 2241–2244
(1984),
http://dx.doi.org/10.1103/PhysRevLett.52.2241
[15] M. Gorman, P.J. Widmann, and K.A. Robbins, Nonlinear dynamics
of a convection loop: A quantitative comparison of experiment with
theory, Physica D 19(2), 255–267 (1986),
http://dx.doi.org/10.1016/0167-2789(86)90022-9
[16] D. Haim, O. Lev, L.M. Pismen, and M. Sheintuch, Modelling
periodic and chaotic dynamics in anodic nickel dissolution, J. Phys.
Chem. 96, 2676–2681 (1992),
http://dx.doi.org/10.1021/j100185a051
[17] K. Pyragas, V. Pyragas, I.Z. Kiss, and J.L. Hudson, Stabilizing
and tracking unknown steady states of dynamical systems, Phys. Rev.
Lett. 89, 244103 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.244103