[PDF]
http://dx.doi.org/10.3952/lithjphys.44102
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 17–26 (2004)
PHOTOEXCITATION OF POLARIZED
ATOMS BY POLARIZED RADIATION
A. Kupliauskienė
Vilnius University Research Institute of Theoretical Physics
and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: akupl@itpa.lt
Received 1 December 2003
An expression for the probability of the
excitation of polarized atoms by polarized radiation is obtained
by using the graphical technique of angular momentum. In the case
of pure states, the applied method is an alternative to that of
density matrix formalism. The obtained expression enables one to
describe the polarization state of an excited atom and can be used
to derive formulas for the special cases under specific
experimental conditions as well as for the photoexcitation as the
first step process. The application of obtained expressions for
the description of multistep processes is discussed. The
photoexcitation of unpolarized atoms by polarized radiation and
polarized atoms by unpolarized radiation is considered as the
examples of practical application of the obtained general
expression.
Keywords: excited atoms, polarization, photoexcitation
PACS: 31.50.Df, 29.25.Pj
POLIARIZUOTO ATOMO SUŽADINIMAS
POLIARIZUOTA SPINDULIUOTE
A. Kupliauskienė
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
Derinamo dažnio lazerio ir sinchrotroninė
spinduliuotės atveria galimybę ne tiktai jonizuoti atomus,
atplėšiant elektronus iš pageidaujamo sluoksnio, bet ir juos
sužadinti į pageidaujamą būseną. Šitaip paruošiami poliarizuoti
atomai, kurie toliau naudojami poliarizacijos reiškiniams
jonizuojant atomus elektronais ir fotonais tirti. Norint vieningai
teoriškai aprašyti atomo sužadinimo ir po jo einančius jonizacijos
vyksmus bei tirti, kaip antrąjį vyksmą apibūdinantys dydžiai
priklauso nuo pirmojo, reikalingos kuo bendresnės tokius vyksmus
aprašančios formulės. Panaudojant judėjimo kiekio momento grafinį
vaizdavimą ir atomo teorijos metodus, surasta poliarizuoto atomo
sužadinimo poliarizuota spinduliuote tikimybės išraiška. Grynųjų
būsenų atveju panaudotasis metodas yra alternatyvus iki šiol
taikytam tankio matricos formalizmui. Surastoji formulė taip pat
aprašo sužadinto atomo poliarizaciją. Ji panaudota nepoliarizuoto
atomo sužadinimo poliarizuota spinduliuote ir poliarizuoto atomo
sužadinimo nepoliarizuota spinduliuote tikimybės išraiškoms rasti,
laikant, kad sužadinimas tėra pirmoji tolimesnio vyksmo stadija.
Taip pat parodyta, kokius pakeitimus reikia padaryti, kad formulės
būtų pritaikytos daugiapakopiams vyksmams aprašyti.
References / Nuorodos
[1] Ph. Golecki and H. Klar, (e, 2e) from laser-excited atoms with
spin-polarized electrons, J. Phys. B 32, 1647–1656 (1999),
http://dx.doi.org/10.1088/0953-4075/32/7/008
[2] H. Aksela, Resonant Auger spectroscopy of atoms and molecules,
J. Electron Spectrosc. 72, 235–242 (1995),
http://dx.doi.org/10.1016/0368-2048(94)02292-5
[3] K. Ueda, Y. Shimizu, H. Chiba, Y. Sato, M. Kitajima, H. Tanaka,
and N.M. Kabachnik, Experimental determination of Auger-decay
amplitudes from the angular correlations in Auger cascades following
the 2p → 4s photoexcitation of Ar, Phys. Rev. Lett. 83,
5463–5466 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.5463
[4] B. Langer, N. Berrah, A. Farhat, M. Humphrey, D. Cubaynes, A.
Menzel, and U. Becker, Angular distributions of resonant and
non-resonant Auger electrons as a test case for the validity of
spectator model: The argon L2MM case, J.
Phys. B 30, 4255–4266 (1977),
http://dx.doi.org/10.1088/0953-4075/30/19/015
[5] P. O'Keeffe, S. Aloise, M. Meyer, and A.N. Grum-Grzhimailo,
Circular polarization of ion fluorescence completing the analysis of
resonant Xe∗ 4d5/2−16p
Auger decay, Phys. Rev. Lett. 90, 023002(4) (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.023002
[6] S.C. McFarlane, The polarization of characteristic X-radiation
excited by electron impact, J. Phys. B 5, 1906–1915 (1972),
http://dx.doi.org/10.1088/0022-3700/5/10/020
[7] A.N. Grum-Grzhimailo and N.M. Kabachnik, Linear magnetic
dichroism in fluorescence spectra, Phys. Lett. A 264,
192–197 (1999),
http://dx.doi.org/10.1016/S0375-9601(99)00800-2
[8] N.M. Kabachnik, I.P. Sazhina, and K. Ueda, Angular distribution
of Auger electrons and fluorescence in cascades and resonantly
enhanced transitions, J. Phys. B 32, 1769–1781 (1999),
http://dx.doi.org/10.1088/0953-4075/32/8/301
[9] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Angular
distribution of autoionization and Auger electrons ejected by
electron impact from laser excited and ionized atoms, J. Phys. B 30,
1269–1281 (1997),
http://dx.doi.org/10.1088/0953-4075/30/5/020
[10] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum
in Quantum Mechanics (Mintis, Vilnius, 1965) [in Russian]
[11] K. Blum, Density Matrix Theory and Applications, 2nd
edn. (Plenum, New York, 1996),
http://dx.doi.org/10.1007/978-1-4757-4931-1
[12] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Polarization
and Correlation Phenomena in Atomic Collisions. A Practical Theory
Course (Kluwer, New York, 2000),
http://dx.doi.org/10.1007/978-1-4757-3228-3
[13] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, General
expression of the photoionization cross-section of an atom in
polarized LS state, Lithuanian J. Phys. 40, 311–320
(2000)
[14] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, Polarization
studies in the photoionization of atoms using a graphical technique,
J. Phys. B 34, 1783–1803 (2001),
http://dx.doi.org/10.1088/0953-4075/34/9/314
[15] A. Kupliauskienė and V. Tutlys, Application of graphical
technique for Auger decay following photoionization of atoms,
Physica Scripta 67, 290–300 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00290
[16] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988),
http://dx.doi.org/10.1142/0270
[17] B. Krassing, J.-C. Bilbeux, R.W. Dunford, D.S. Gemmell, S.
Hasegawa, E.P. Hanter, S.H. Southworth, L. Young, L.A. LaJohn, and
R.H. Prat, Nondipole asymmetries of Kr 1s photoelectrons,
Phys. Rev. A 67, 022707 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.022707
[18] H. Klar, Polarization of fluorescence radiation following
atomic photoionization, J. Phys. B 13, 2037–2049 (1980),
http://dx.doi.org/10.1088/0022-3700/13/10/011
[19] A. Kupliauskienė and V. Tutlys, Auger decay probability
following photoionization of atoms, Lithuanian J. Phys. 43,
27–34 (2003)
[20] B. Lohmann, U, Hergenhahn, and N.M. Kabachnik, Spin
polarization of Auger electrons from noble gases after
photoionization with circularly polarized light, J. Phys. B 26,
3327–3338 (1993),
http://dx.doi.org/10.1088/0953-4075/26/19/021