[PDF]    http://dx.doi.org/10.3952/lithjphys.44102

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 17–26 (2004)


PHOTOEXCITATION OF POLARIZED ATOMS BY POLARIZED RADIATION
A. Kupliauskienė
Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: akupl@itpa.lt

Received 1 December 2003

An expression for the probability of the excitation of polarized atoms by polarized radiation is obtained by using the graphical technique of angular momentum. In the case of pure states, the applied method is an alternative to that of density matrix formalism. The obtained expression enables one to describe the polarization state of an excited atom and can be used to derive formulas for the special cases under specific experimental conditions as well as for the photoexcitation as the first step process. The application of obtained expressions for the description of multistep processes is discussed. The photoexcitation of unpolarized atoms by polarized radiation and polarized atoms by unpolarized radiation is considered as the examples of practical application of the obtained general expression.
Keywords: excited atoms, polarization, photoexcitation
PACS: 31.50.Df, 29.25.Pj


POLIARIZUOTO ATOMO SUŽADINIMAS POLIARIZUOTA SPINDULIUOTE
A. Kupliauskienė
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva


Derinamo dažnio lazerio ir sinchrotroninė spinduliuotės atveria galimybę ne tiktai jonizuoti atomus, atplėšiant elektronus iš pageidaujamo sluoksnio, bet ir juos sužadinti į pageidaujamą būseną. Šitaip paruošiami poliarizuoti atomai, kurie toliau naudojami poliarizacijos reiškiniams jonizuojant atomus elektronais ir fotonais tirti. Norint vieningai teoriškai aprašyti atomo sužadinimo ir po jo einančius jonizacijos vyksmus bei tirti, kaip antrąjį vyksmą apibūdinantys dydžiai priklauso nuo pirmojo, reikalingos kuo bendresnės tokius vyksmus aprašančios formulės. Panaudojant judėjimo kiekio momento grafinį vaizdavimą ir atomo teorijos metodus, surasta poliarizuoto atomo sužadinimo poliarizuota spinduliuote tikimybės išraiška. Grynųjų būsenų atveju panaudotasis metodas yra alternatyvus iki šiol taikytam tankio matricos formalizmui. Surastoji formulė taip pat aprašo sužadinto atomo poliarizaciją. Ji panaudota nepoliarizuoto atomo sužadinimo poliarizuota spinduliuote ir poliarizuoto atomo sužadinimo nepoliarizuota spinduliuote tikimybės išraiškoms rasti, laikant, kad sužadinimas tėra pirmoji tolimesnio vyksmo stadija. Taip pat parodyta, kokius pakeitimus reikia padaryti, kad formulės būtų pritaikytos daugiapakopiams vyksmams aprašyti.


References / Nuorodos


[1] Ph. Golecki and H. Klar, (e, 2e) from laser-excited atoms with spin-polarized electrons, J. Phys. B 32, 1647–1656 (1999),
http://dx.doi.org/10.1088/0953-4075/32/7/008
[2] H. Aksela, Resonant Auger spectroscopy of atoms and molecules, J. Electron Spectrosc. 72, 235–242 (1995),
http://dx.doi.org/10.1016/0368-2048(94)02292-5
[3] K. Ueda, Y. Shimizu, H. Chiba, Y. Sato, M. Kitajima, H. Tanaka, and N.M. Kabachnik, Experimental determination of Auger-decay amplitudes from the angular correlations in Auger cascades following the 2p → 4s photoexcitation of Ar, Phys. Rev. Lett. 83, 5463–5466 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.5463
[4] B. Langer, N. Berrah, A. Farhat, M. Humphrey, D. Cubaynes, A. Menzel, and U. Becker, Angular distributions of resonant and non-resonant Auger electrons as a test case for the validity of spectator model: The argon L2MM case, J. Phys. B 30, 4255–4266 (1977),
http://dx.doi.org/10.1088/0953-4075/30/19/015
[5] P. O'Keeffe, S. Aloise, M. Meyer, and A.N. Grum-Grzhimailo, Circular polarization of ion fluorescence completing the analysis of resonant Xe 4d5/2−16p Auger decay, Phys. Rev. Lett. 90, 023002(4) (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.023002
[6] S.C. McFarlane, The polarization of characteristic X-radiation excited by electron impact, J. Phys. B 5, 1906–1915 (1972),
http://dx.doi.org/10.1088/0022-3700/5/10/020
[7] A.N. Grum-Grzhimailo and N.M. Kabachnik, Linear magnetic dichroism in fluorescence spectra, Phys. Lett. A 264, 192–197 (1999),
http://dx.doi.org/10.1016/S0375-9601(99)00800-2
[8] N.M. Kabachnik, I.P. Sazhina, and K. Ueda, Angular distribution of Auger electrons and fluorescence in cascades and resonantly enhanced transitions, J. Phys. B 32, 1769–1781 (1999),
http://dx.doi.org/10.1088/0953-4075/32/8/301
[9] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Angular distribution of autoionization and Auger electrons ejected by electron impact from laser excited and ionized atoms, J. Phys. B 30, 1269–1281 (1997),
http://dx.doi.org/10.1088/0953-4075/30/5/020
[10] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics (Mintis, Vilnius, 1965) [in Russian]
[11] K. Blum, Density Matrix Theory and Applications, 2nd edn. (Plenum, New York, 1996),
http://dx.doi.org/10.1007/978-1-4757-4931-1
[12] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions. A Practical Theory Course (Kluwer, New York, 2000),
http://dx.doi.org/10.1007/978-1-4757-3228-3
[13] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, General expression of the photoionization cross-section of an atom in polarized LS state, Lithuanian J. Phys. 40, 311–320 (2000)
[14] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, Polarization studies in the photoionization of atoms using a graphical technique, J. Phys. B 34, 1783–1803 (2001),
http://dx.doi.org/10.1088/0953-4075/34/9/314
[15] A. Kupliauskienė and V. Tutlys, Application of graphical technique for Auger decay following photoionization of atoms, Physica Scripta 67, 290–300 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00290
[16] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988),
http://dx.doi.org/10.1142/0270
[17] B. Krassing, J.-C. Bilbeux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Hanter, S.H. Southworth, L. Young, L.A. LaJohn, and R.H. Prat, Nondipole asymmetries of Kr 1s photoelectrons, Phys. Rev. A 67, 022707 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.022707
[18] H. Klar, Polarization of fluorescence radiation following atomic photoionization, J. Phys. B 13, 2037–2049 (1980),
http://dx.doi.org/10.1088/0022-3700/13/10/011
[19] A. Kupliauskienė and V. Tutlys, Auger decay probability following photoionization of atoms, Lithuanian J. Phys. 43, 27–34 (2003)
[20] B. Lohmann, U, Hergenhahn, and N.M. Kabachnik, Spin polarization of Auger electrons from noble gases after photoionization with circularly polarized light, J. Phys. B 26, 3327–3338 (1993),
http://dx.doi.org/10.1088/0953-4075/26/19/021