[PDF]    http://dx.doi.org/10.3952/lithjphys.44203

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 121–134 (2004)


ANGULAR INTEGRATION USING SYMBOLIC STATE EXPANSIONS
C. Froese Fischera and D. Ellisb
aDepartment of Computer Science, Box 1679B, Vanderbilt University, Nashville, TN 37235, USA
E-mail: Charlotte.F.Fischer@Vanderbilt.Edu
bDepartment of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
Received 23 April 2004

Dedicated to the 100th anniversary of Professor A. Jucys

Angular integrations are not concerned with the principal quantum numbers of orbitals, only their angular momentum coupling, although antisymmetry and normalization need to be considered. We show that by expressing wave function expansions in terms of certain symbolic states, the angular data needed for a calculation becomes largely independent of problem size under the assumption that one- and two-electron operators for matrix elements between two-electron states can be evaluated when needed. Furthermore, for the Coulomb interaction, all many-electron matrix elements between symbolic states arising from single and double excitations from a multireference set can be expressed in terms of a sum of contributions, each of which is a product of three factors: a constant, a two-electron matrix element, and a factor depending on the orbital quantum numbers of the interacting orbitals. The 1s22s2 1S beryllium ground state is considered in detail.
Keywords: angular integration, symbolic state expansion, Coulomb interaction, matrix elements
PACS: 31.15.–p, 02.70.–c


KAMPINIS INTEGRAVIMAS PANAUDOJANT SIMBOLINIUS BŪSENŲ SKLEIDINIUS
C. Froese Fischera, D. Ellisb
aVanderbilto universitetas, Nešvilis, JAV
bToledo universitetas, Toledas, JAV

Pateiktas bendras algoritmas atomo banginės funkcijos skleidiniui gauti ir įvairių atominių dydžių operatorių matriciniams elementams skaičiuoti. Elektrostatinės sąveikos operatoriaus matricinis elementas yra išreiškiamas kaip trijų daugiklių – konstantos, dvielektronio matricinio elemento ir daugiklio, priklausančio nuo sąveikaujančių elektronų orbitinių kvantinių skaičių, – sandauga. Išsamiai aprašyta berilio 1s22s2 1S pagrindinė būsena.


References / Nuorodos


[1] J.C. Slater, Phys. Rev. 34, 1293; 1312 (1929),
http://dx.doi.org/10.1103/PhysRev.34.1293
[2] D.R. Hartree, W. Hartree, and B. Swirles, Philos. Trans. A 238, 229 (1939),
http://dx.doi.org/10.1098/rsta.1939.0008
[3] A.P. Jucys, Proc. Roy. Soc. London Ser. A 173, 59 (1939),
http://dx.doi.org/10.1098/rspa.1939.0128
[4] C. Froese Fischer, Douglas Rayner Hartree: His Life in Science and Computing (World Scientific, Singapore, 2004),
http://dx.doi.org/10.1142/9789812795014
[5] A. Porter, Mem. Proc. Manch. Lit. Phil. Soc. 79, 75 (1934–1935)
[6] G. Racah, Phys. Rev. 61, 186 (1942); 62, 438 (1942); 63, 367 (1943),
http://dx.doi.org/10.1103/PhysRev.61.186,
http://dx.doi.org/10.1103/PhysRev.62.438,
http://dx.doi.org/10.1103/PhysRev.63.367
[7] R. Karazija (private communication)
[8] A. Hibbert, Comput. Phys. Commun. 1, 359 (1970); 2, 180 (1971); 7, 318 (1974); 8, 329 (1974),
http://dx.doi.org/10.1016/0010-4655(70)90037-8,
http://dx.doi.org/10.1016/0010-4655(71)90051-8,
http://dx.doi.org/10.1016/0010-4655(74)90029-0,
http://dx.doi.org/10.1016/0010-4655(74)90022-8
[9] C. Froese Fischer, Comput. Phys. Commun. 1, 151 (1970); 4, 107 (1972); 14, 145 (1978); 64, 431 (1991),
http://dx.doi.org/10.1016/0010-4655(70)90002-0,
http://dx.doi.org/10.1016/0010-4655(72)90039-2,
http://dx.doi.org/10.1016/0010-4655(78)90057-7,
http://dx.doi.org/10.1016/0010-4655(91)90137-A
[10] A. Bar-Shalom and M. Klapisch, Comput. Phys. Commun. 50, 375 (1988),
http://dx.doi.org/10.1016/0010-4655(88)90192-0
[11] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, J. Phys. B 30, 3747 (1997),
http://dx.doi.org/10.1088/0953-4075/30/17/006
[12] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambridge, 1997),
http://dx.doi.org/10.1017/CBO9780511524554
[13] C. Froese Fischer and B. Liu, Comput. Phys. Commun. 64, 406 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90135-8
[14] L. Sturesson and C. Froese Fischer, Comput. Phys. Commun. 74, 432 (1993),
http://dx.doi.org/10.1016/0010-4655(93)90024-7
[15] P. Jönsson (1996) (unpublished)
[16] I.P. Grant and H. Quiney, Mol. Phys. (submitted)
[17] A. Weiss (1995) (private communication)
[18] O. Zatsarinny and C. Froese Fischer, Comput. Phys. Commun. 124, 247 (2000),
http://dx.doi.org/10.1016/S0010-4655(99)00441-5
[19] C. Froese Fischer, Int. J. Supercomputer Appl. 5, 5 (1991),
http://dx.doi.org/10.1177/109434209100500101
[20] E.R. Davidson, J. Comput. Phys. 17, 87 (1975)
http://dx.doi.org/10.1016/0021-9991(75)90065-0
A. Stathopoulos and C. Froese Fischer, Comput. Phys. Commun. 79, 268 (1994),
http://dx.doi.org/10.1016/0010-4655(94)90073-6
[21] A. Irimia and C. Froese Fischer, Physica Scripta (2004) (accepted)
[22] A.W. Weiss, Phys. Rev. A 51, 1067 (1995),
http://dx.doi.org/10.1002/phbl.19950511107
[23] R. Matulioniene, Angular momentum algebra for symbolic state expansion in atomic theory, PhD thesis (University of Toledo, 1999)
[24] A.P. Jucys and A.A. Bandzaitis, The Theory of Angular Momentum in Quantum Mechanics, 2nd edn. (Mokslas, Vilnius, 1977) [in Russian]