[PDF]
http://dx.doi.org/10.3952/lithjphys.44203
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 121–134 (2004)
ANGULAR INTEGRATION USING
SYMBOLIC STATE EXPANSIONS
C. Froese Fischera and D. Ellisb
aDepartment of Computer Science, Box 1679B,
Vanderbilt University, Nashville, TN 37235, USA
E-mail: Charlotte.F.Fischer@Vanderbilt.Edu
bDepartment of Physics and Astronomy, University
of Toledo, Toledo, OH 43606, USA
Received 23 April 2004
Dedicated to the 100th anniversary of Professor A. Jucys
Angular integrations are not concerned with the
principal quantum numbers of orbitals, only their angular momentum
coupling, although antisymmetry and normalization need to be
considered. We show that by expressing wave function expansions in
terms of certain symbolic states, the angular data needed for a
calculation becomes largely independent of problem size under the
assumption that one- and two-electron operators for matrix
elements between two-electron states can be evaluated when needed.
Furthermore, for the Coulomb interaction, all many-electron matrix
elements between symbolic states arising from single and double
excitations from a multireference set can be expressed in terms of
a sum of contributions, each of which is a product of three
factors: a constant, a two-electron matrix element, and a factor
depending on the orbital quantum numbers of the interacting
orbitals. The 1s22s2 1S
beryllium ground state is considered in detail.
Keywords: angular integration, symbolic state expansion,
Coulomb interaction, matrix elements
PACS: 31.15.–p, 02.70.–c
KAMPINIS INTEGRAVIMAS
PANAUDOJANT SIMBOLINIUS BŪSENŲ SKLEIDINIUS
C. Froese Fischera, D. Ellisb
aVanderbilto universitetas, Nešvilis, JAV
bToledo universitetas, Toledas, JAV
Pateiktas bendras algoritmas atomo banginės
funkcijos skleidiniui gauti ir įvairių atominių dydžių operatorių
matriciniams elementams skaičiuoti. Elektrostatinės sąveikos
operatoriaus matricinis elementas yra išreiškiamas kaip trijų
daugiklių – konstantos, dvielektronio matricinio elemento ir
daugiklio, priklausančio nuo sąveikaujančių elektronų orbitinių
kvantinių skaičių, – sandauga. Išsamiai aprašyta berilio 1s22s2
1S pagrindinė būsena.
References / Nuorodos
[1] J.C. Slater, Phys. Rev. 34, 1293; 1312 (1929),
http://dx.doi.org/10.1103/PhysRev.34.1293
[2] D.R. Hartree, W. Hartree, and B. Swirles, Philos. Trans. A 238,
229 (1939),
http://dx.doi.org/10.1098/rsta.1939.0008
[3] A.P. Jucys, Proc. Roy. Soc. London Ser. A 173, 59
(1939),
http://dx.doi.org/10.1098/rspa.1939.0128
[4] C. Froese Fischer, Douglas Rayner Hartree: His Life in
Science and Computing (World Scientific, Singapore, 2004),
http://dx.doi.org/10.1142/9789812795014
[5] A. Porter, Mem. Proc. Manch. Lit. Phil. Soc. 79, 75
(1934–1935)
[6] G. Racah, Phys. Rev. 61, 186 (1942); 62, 438
(1942); 63, 367 (1943),
http://dx.doi.org/10.1103/PhysRev.61.186,
http://dx.doi.org/10.1103/PhysRev.62.438,
http://dx.doi.org/10.1103/PhysRev.63.367
[7] R. Karazija (private communication)
[8] A. Hibbert, Comput. Phys. Commun. 1, 359 (1970); 2,
180 (1971); 7, 318 (1974); 8, 329 (1974),
http://dx.doi.org/10.1016/0010-4655(70)90037-8,
http://dx.doi.org/10.1016/0010-4655(71)90051-8,
http://dx.doi.org/10.1016/0010-4655(74)90029-0,
http://dx.doi.org/10.1016/0010-4655(74)90022-8
[9] C. Froese Fischer, Comput. Phys. Commun. 1, 151 (1970);
4, 107 (1972); 14, 145 (1978); 64, 431
(1991),
http://dx.doi.org/10.1016/0010-4655(70)90002-0,
http://dx.doi.org/10.1016/0010-4655(72)90039-2,
http://dx.doi.org/10.1016/0010-4655(78)90057-7,
http://dx.doi.org/10.1016/0010-4655(91)90137-A
[10] A. Bar-Shalom and M. Klapisch, Comput. Phys. Commun. 50,
375 (1988),
http://dx.doi.org/10.1016/0010-4655(88)90192-0
[11] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, J. Phys. B 30,
3747 (1997),
http://dx.doi.org/10.1088/0953-4075/30/17/006
[12] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge
University Press, Cambridge, 1997),
http://dx.doi.org/10.1017/CBO9780511524554
[13] C. Froese Fischer and B. Liu, Comput. Phys. Commun. 64,
406 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90135-8
[14] L. Sturesson and C. Froese Fischer, Comput. Phys. Commun. 74,
432 (1993),
http://dx.doi.org/10.1016/0010-4655(93)90024-7
[15] P. Jönsson (1996) (unpublished)
[16] I.P. Grant and H. Quiney, Mol. Phys. (submitted)
[17] A. Weiss (1995) (private communication)
[18] O. Zatsarinny and C. Froese Fischer, Comput. Phys. Commun. 124,
247 (2000),
http://dx.doi.org/10.1016/S0010-4655(99)00441-5
[19] C. Froese Fischer, Int. J. Supercomputer Appl. 5, 5
(1991),
http://dx.doi.org/10.1177/109434209100500101
[20] E.R. Davidson, J. Comput. Phys. 17, 87 (1975)
http://dx.doi.org/10.1016/0021-9991(75)90065-0
A. Stathopoulos and C. Froese Fischer, Comput. Phys. Commun. 79, 268
(1994),
http://dx.doi.org/10.1016/0010-4655(94)90073-6
[21] A. Irimia and C. Froese Fischer, Physica Scripta (2004)
(accepted)
[22] A.W. Weiss, Phys. Rev. A 51, 1067 (1995),
http://dx.doi.org/10.1002/phbl.19950511107
[23] R. Matulioniene, Angular momentum algebra for symbolic state
expansion in atomic theory, PhD thesis (University of Toledo, 1999)
[24] A.P. Jucys and A.A. Bandzaitis, The Theory of Angular
Momentum in Quantum Mechanics, 2nd edn. (Mokslas, Vilnius,
1977) [in Russian]