[PDF]
http://dx.doi.org/10.3952/lithjphys.44204
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 135–153 (2004)
MULTICONFIGURATION APPROACH IN
THE STUDY OF ATOMIC SPECTRA
P. Bogdanovich
Vilnius University Research Institute of Theoretical Physics
and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavlas@itpa.lt
Received 25 February 2004
Dedicated to the 100th anniversary of Professor A. Jucys
The methods to account for the correlation
effects in theoretical studies of the atomic spectra by the
superposition of configurations, that were developed at the
Department of Theory of Atom in the Institute of Theoretical
Physics and Astronomy during 50 years since the creation of
multiconfiguration equations, are briefly discussed.
Keywords: multiconfiguration approach, superposition of
configurations, correlation corrections, radial orbital, energy
spectra
PACS: 31.10.+z, 31.25.–v
DAUGIAKONFIGŪRACINIO ARTUTINUMO
TAIKYMAS ATOMINIAMS SPEKTRAMS TIRTI
P. Bogdanovich
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
Apžvelgta daugiakonfigūracinio artutinumo
metodų, sukurtų Teorinės fizikos ir astronomijos instituto Atomo
teorijos skyriuje atomų bei jonų spektrinėms charakteristikoms
tirti, plėtra per pastaruosius penkiasdešimt metų, pradedant nuo
to laiko, kai prof. A. Jucys sukūrė daugiakonfigūracines lygtis.
Trumpai aptartos tų lygčių sprendinių savybės bei galimybė juos
pakeisti transformuotomis radialiosiomis orbitalėmis. Taip pat
aprašyti būdai, leidžiantys efektyviai diagonalizuoti dideles
energijos operatoriaus matricas, jeigu tik apatinis jų trikampis
telpa kompiuterio operatyviojoje atmintyje, ir metodai,
leidžiantys efektyviai parinkti pataisines konfigūracijas bei
dešimtimis kartų mažinti naudojamų termų rinkinius. Aprašytų
metodų taikymas iliustruotas keliais pavyzdžiais.
References / Nuorodos
[1] A. Jucys, Fock equations in a multiconfiguration approach, JETP
23, 2(8), 129–139 (1952) [in Russian]
[2] A. Bolotin and A. Jucys, Application of a multiconfiguration
approach in definition of dipole strength for beryllium- and
boron-like atoms, JETP 24(5), 537–544 (1953) [in Russian]
[3] V. Kaveckis and A. Jucys, Analytic single-electron wave
functions in a multiconfiguration approach for beryllium- and
boron-like atoms, JETP 25(3(9)), 257–263 (1953) [in Russian]
[4] V. Kybartas and A. Jucys, Solution of Fock equations for
beryllium atom in two-configuration approach, JETP 25(3(9)),
264–270 (1953) [in Russian]
[5] G. Ciunaitis and A. Jucys, Two-configuration approach for 1s22s22p3s
configuration of carbon atom, JETP 25(6(12)), 679–682 (1953)
[in Russian]
[6] A. Jucys, V. Kybartas, and I. Glembockis, Solution of simplified
Fock equations in two-configuration approach for beryllium-like
atoms, JETP 27(4(10)), 425–430 (1954) [in Russian]
[7] V. Kybartas, V. Kaveckis, and A. Jucys, Self-consistent Fock
field in three-configuration approach for boron atom, JETP
29(5(11)), 623–628 (1955) [in Russian]
[8] R. Karazija, Numerical solution of Hartree–Fock equations, in: Scientific
Conference of Young Scientists (Vilnius, 1967) pp. 87–89 [in
Russian]
[9] R. Karazija, P. Bogdanovich, and A. Jucys, On the numerical
solution of Hartree–Fock equations independent of coupling sheme,
Acta Phys. Hung. 27, 467–475 (1969),
http://dx.doi.org/10.1007/BF03156767
[10] P. Bogdanovich, Program for numerical solution of Hartree–Fock
equations, in: Collection of Programs for the Automation of
Atomic Calculations, Vol. 2 (Institute of Physics, Vilnius,
1977) 96 p. [in Russian]
[11] P. Bogdanovich and A. Jucys, Numerical solution of Hartree–Fock
equations in single- and two-configuration approach, in: All-Union
Seminar on Theory of Atoms and Atomic Spectra, Abstracts,
Liet. Fiz. Rink. 12(4), 697 (1972) [in Russian]
[12] P. Bogdanovich and A. Jucys, Self-consistent Hartree–Fock field
in tetra-configuration approach for Pr3+, in: Proceedings
of All-Union Seminar on Theory of Atoms and Atomic Spectra
(Moscow, 1972) pp. 64–68 [in Russian]
[13] P.O. Bogdanovich and G.L. Zukauskas, Approximate allowance for
superposition of configurations in atomic spectra, Sov. Phys. –
Collection 23(3), 13–25 (1983)
[14] V. Fock, Näherungsmethods zur Lösung des quantenmechanischen
Mehrkörperproblems, Z. Phys. B 61, 126–148 (1930),
http://dx.doi.org/10.1007/BF01340294
[15] Ch. Froese-Fischer, The Hartree–Fock Method for Atoms
(Wiley, New York, 1977) 308 p.
[16] C.F. Fischer, T. Brage, and P. Jönsson, Computational
Atomic Structure. An MCHF Approach (Institute of Physics
Publishing, Bristol and Philadelphia, 1997) 280 p.
[17] A. Jucys, J. Vizbaraite, T. Strockyte, and A. Bandzaitis, On
multiconfiguration approach and its convergence, Opt. Spektrosk.
(USSR) 12(2), 157–162 (1962) [in Russian]
[18] P. Bogdanovich, On the problem of usage of transformed
functions for approach of solutions of multiconfiguration
Hartree–Fock–Jucys equations, in: Processes in Inner Shells of
Atoms (Moscow, Scientific Council on Spectroscopy, 1986) pp.
90–111 [in Russian]
[19] P. Bogdanovich and J. Boruta, On the numerical solution of the
Hartree–Fock–Jucys equations, Sov. Phys. – Collection 16(1),
34–70 (1976)
[20] P.O. Bogdanovicius, J.I. Boruta, and J.I. Vizbaraite,
Calculation of the probabilities of np5n′p
→ np5n′s dipole transitions for the Ne I
and Ar I spectra in the two-configuration approach, Sov. Phys. –
Collection 16(2), 42–45 (1976)
[21] A. Jucys, J . Vizbaraite, J. Batarunas, and V. Kaveckis, On
multiconfiguration approach and its further development, Proceedings
of Lithuanian Academy of Sciences B 2(14), 3–16 (1958) [in
Russian]
[22] M. Bogdanovichiene and P. Bogdanovich, Solution of
Hartree–Fock–Jucys equations for highly charged ions, in: 6th
All-Union Conference on Theory of Atom, Abstracts (Voronezh,
1980) [in Russian]
[23] P.O. Bogdanovich, G.L. Zukauskas, and S.D. Sadziuviene, Role of
atomic energy correlation corrections defined by configurations of
the type n1l1N1−1n2l2N2n3l3
and n3l34l3+1n1l1N1+1n2l2N2
, Sov. Phys. – Collection 24(5), 20–27 (1984)
[24] P. Bogdanovich, G. Zhukauskas, and S. Sadziuviene, Energy
spectra of rare earth elements ions accounting correlation
corrections, in: Many-Particle Effects in Atoms (Moscow,
Scientific Council on Spectroscopy, 1985) pp. 39–86 [in Russian]
[25] P. Bogdanovich, R. Lukoshiavichius, A. Nikitin, Z. Rudzikas,
and A. Holtygin, Lines of carbon, nitrogen and oxygen ions in
planetary nebulae spectra, I. Transition probabilities and
oscillator strengths, Astrophysics 22(3), 551–562 (1985) [in
Russian],
http://dx.doi.org/10.1007/BF01029728
[26] P.O. Bogdanovich, G.L. Zukauskas, A.P. Momkauskaite, and V.I.
Tutlys, Calculation of radiation lifetimes of Ar II and Kr II energy
levels, Sov. Phys. – Collection 25(6), 33–40 (1985)
[27] K. Blagoev, P. Bogdanovich, N. Dimitrov, B. Amar, A.
Momkauskaite, and Z. Rudzikas, Two-electron transitions between
nd8(n+1)s2–nd9(n+1)p
configurations in the spectra of Cu+, Ag+, Au+,
Zn2+, Cd2+, Hg2+, Physica Scripta 41(2),
213–216 (1990),
http://dx.doi.org/10.1088/0031-8949/41/2/005
[28] P. Bogdanovich, G. Tautvaišienė, Z. Rudzikas, and A.
Momkauskaitė, A simple method of accounting for correlation effects
in electron transitions and its application in finding oscillator
strengths and the solar abundance of zirconium, Mon. Not. R. Astron.
Soc. 280, 95–102 (1996),
http://dx.doi.org/10.1093/mnras/280.1.95
[29] P. Bogdanovich, A.K. Kazansky, and V.N. Ostrovsky,
Near-threshold double photoionization: Kr + γ → Kr2+(3Pe)
+ e + e, J. Phys. B 30, 921–940 (1997),
http://dx.doi.org/10.1088/0953-4075/30/4/013
[30] M.-C. Buchet-Poulizac, P. Bogdanovich, and E.J. Knystautas,
Spectroscopic study of doubly excited levels in Ne VII∗∗
and Ne VIII∗∗, J. Phys. B
34, 233–243 (2001),
http://dx.doi.org/10.1088/0953-4075/34/3/302
[31] P. Bogdanovich, G. Gaigalas, A. Momkauskaite, and Z. Rudzikas,
Accounting for admixed configurations in the second order of
perturbation theory for complex atoms, Physica Scripta 56,
230–239 (1997),
http://dx.doi.org/10.1088/0031-8949/56/3/002
[32] P. Bogdanovich and P. Vaitiekunas, Calculation by dipole static
polarizabilities of the light atoms and ions by the transformed
functions, Sov. Phys. – Collection 25(3), 15–23 (1985)
[33] P.O. Bogdanovich, Usage of transformed functions for
calculations of electric dipole transitions, Lithuanian Phys. J.
31(2), 79–83 (1991)
[34] P. Bogdanovich and G. Dushkesas, Correlation correction for the
electron density at the nuclei of light atoms, Lithuanian Phys. J.
38(1), 122–126 (1998)
[35] P. Bogdanovich, S. Shadzhiuviene, and N. Piskunova,
Investigation of properties of transformed radial orbitals,
Lithuanian Phys. J. 38(2), 145–151 (1998)
[36] P. Bogdanovich and R. Karpushkiene, Transformed radial orbitals
with a variable parameter for the configuration interaction,
Lithuanian Phys. J. 39(3), 154–169 (1999)
[37] R. Karazija, Sums of Atomic Quantities and Mean
Characteristics of Spectra (Mokslas, Vilnius, 1991) 272 p. [in
Russian]
[38] S. Kucas, V. Jonauskas, and R. Karazija, Global characteristics
of atomic spectra and their use for the analysis of spectra, IV.
Configuration interaction effects, Physica Scripta 55,
667–675 (1997),
http://dx.doi.org/10.1088/0031-8949/55/6/006
[39] R. Karpuškienė, R. Karazija, and P. Bogdanovich, The average
energy distance between two interacting configurations and its
application for the investigation of CI in atoms, Physica Scripta
64, 333–342 (2001),
http://dx.doi.org/10.1238/Physica.Regular.064a00333
[40] P. Bogdanovich, R. Karpuškienė, and Z. Rudzikas, Calculation of
electronic transitions in S IX, Physica Scripta 1999(T80B),
474–475 (1999),
http://dx.doi.org/10.1238/Physica.Topical.080a00474
[41] P. Bogdanovich, R. Karpushkiene, A. Momkauskaite, and A. Udris,
Theoretical calculation of wavelengths and oscillator strengths of 2p–3l
transitions in Mg V, Si VII, and S IX ions, Lithuanian J. Phys. 39(1),
9–23 (1999)
[42] P. Bogdanovich and I. Martinson, Theoretical transition
probabilities for Au II, Physica Scripta 61, 142–145
(2000),
http://dx.doi.org/10.1238/Physica.Regular.061a00142
[43] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė,
Calculation of electron transitions in the 2p3
configuration of Ar XII and Ca XIV, Lithuanian J. Phys. 40(4),
248–252 (2000)
[44] P. Bogdanovich, A. Kyniene, R. Karazija, R. Karpuškienė, and G.
Gaigalas, Additional symmetry for the electronic shell in its ground
state and many-electron effects, Eur. Phys. J. D 11, 175–183
(2000),
http://dx.doi.org/10.1007/s100530070081
[45] R. Karpuškienė and P. Bogdanovich, Oscillator strengths of Zn I
and Zn II, Lithuanian J. Phys. 41(3), 174–176 (2001)
[46] P. Bogdanovich, R. Karpuškienė, and I. Martinson, Ab initio
wavelengths and oscillator strengths for Cl X, Physica Scripta 67,
44–51 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00044
[47] P. Bogdanovich, R. Karpuškienė, and I. Martinson, Theoretical
lifetimes for all states of five Cl X configurations, Nucl. Instrum.
Methods B 205, 70–73 (2003),
http://dx.doi.org/10.1016/S0168-583X(02)01978-X
[48] P. Bogdanovich, R. Karpuškienė, and A. Udris, Theoretical study
of the energy spectrum of the 2p33p in S IX
and related electron transitions, Physica Scripta 67,
395–400 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00395
[49] R. Karpuškienė and P. Bogdanovich, Two-electron transitions and
their importance for lifetimes of levels of configuration 2p43p
in K XI, J. Phys. B 36, 2145–2152 (2003),
http://dx.doi.org/10.1088/0953-4075/36/11/301
[50] R. Karpuškienė, P. Bogdanovich, and A. Udris, Ab initio
oscillator strengths and transition probabilities of transitions
from 2s22p23l and 2s2p33l
in S X, At. Data Nucl. Data Tables (in press)
[51] P. Bogdanovich and R. Karpuškienė, Numerical methods of the
preliminary evaluation of the role of admixed configurations in
atomic calculations, Comput. Phys. Commun. 134, 321–334
(2001),
http://dx.doi.org/10.1016/S0010-4655(00)00214-9
[52] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, A program
of generation and selection of configurations for the configuration
interaction method in atomic calculations SELECTCONF, Comput. Phys.
Commun. (submitted)
[53] Ch. Froese Fischer, The MCHF atomic-structure package, Comput.
Phys. Commun. 128, 635–636 (2000),
http://dx.doi.org/10.1016/S0010-4655(00)00009-6
[54] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some
problems of calculation of energy spectra of complex atomic
configurations, Comput. Phys. Commun. 143, 174–180 (2002),
http://dx.doi.org/10.1016/S0010-4655(01)00446-5
[55] P. Bogdanovich and A. Momkauskaitė, A program for generating
configuration state lists in many-electron atoms, Comput. Phys.
Commun. (submitted)
[56] P. Bogdanovich, S. Shadzhiuviene, and V. Tutlys, Partial
diagonalization of large energy matrices, Lithuanian J. Phys. 36(4),
312–314 (1996)
[57] K. Rajnak and B.G. Wybourne, Configuration interaction effects
in lN configurations, Phys. Rev. 132, 280
(1963),
http://dx.doi.org/10.1103/PhysRev.132.280
[58] B.G. Wybourne, Generalization of “Linear theory” of
configuration interaction, Phys. Rev. 137, A364 (1965),
http://dx.doi.org/10.1103/PhysRev.137.A364
[59] P. Bogdanovich, G. Gaigalas, and A. Momkauskaite, Accounting
for correlation corrections to interconfigurational matrix elements,
Lithuanian Phys. J. 38(5), 368–374 (1998)
[60] C.F. Fischer, A general Hartree–Fock program, Comput. Phys.
Commun. 43, 355–363 (1987),
http://dx.doi.org/10.1016/0010-4655(87)90053-1
[61] A. Hibbert, R. Glass, and C.F. Fischer, A general program for
computing angular integrals of the Breit–Pauli Hamiltonian, Comput.
Phys. Commun. 64(3), 455–472 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90138-B
[62] G. Gaigalas, The library of subroutines for calculation of
matrix elements of two-particle operators for many-electron atoms,
Lithuanian J. Phys. 42(2), 73–86 (2002)
[63] C.F. Fischer, M.R. Godefroid, and A. Hibbert, A program for
performing angular integrations for transitions operators, Comput.
Phys. Commun. 64(3), 486–500 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90140-G
[64] C.F. Fischer and M.R. Godefroid, Programs for computing LS
and
LSJ transitions from MCHF wave functions, Comput. Phys.
Commun.
64(3), 501–519 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90141-7
[65] C. Jupén and E. Träbert, The 2p43s and
3d configurations in K XI, J. Phys. B 34, 3053–3061
(2001),
http://dx.doi.org/10.1088/0953-4075/34/15/311
[66] P. Bogdanovich, R. Karpuškienė, and A. Udris, Ab initio
oscillator strengths and radiative lifetimes for Ca IX, J. Phys. B.
(submitted)
[67] http://www.physics.nist.gov/cgi-bin/AtData/main_asd
[68] B.C. Fawcett, Calculated oscillator strengths and wavelengths
for allowed transitions within the third shell for ions in the
Mg-like isoelectronic sequence between S V and Ni XVII, At. Data
Nucl. Data Tables 28, 579–596 (1983),
http://dx.doi.org/10.1016/0092-640X(83)90007-4
[69] E. Träbert et al., Beam-foil study of the lifetimes of n
= 3 levels in Na-like Ca X, Mg-like Ca IX and Si-like Ca VII, J.
Phys. B
29, 2647–2659 (1996),
http://dx.doi.org/10.1088/0953-4075/29/13/005
[70] S.S. Tayal, Oscillator strengths for Ar VII, Ca IX and Fe XV,
J. Phys. B 19, 3421–3430 (1986),
http://dx.doi.org/10.1088/0022-3700/19/21/010
[71] U.I. Safronova, W.R. Johnson, and H.G. Berry, Excitation
energies and transition rates in magnesiumlike ions, Phys. Rev. A
61, 052503-1–11 (2000),
http://dx.doi.org/10.1103/PhysRevA.61.052503