[PDF]    http://dx.doi.org/10.3952/lithjphys.44204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 135–153 (2004)


MULTICONFIGURATION APPROACH IN THE STUDY OF ATOMIC SPECTRA
P. Bogdanovich
Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavlas@itpa.lt

Received 25 February 2004

Dedicated to the 100th anniversary of Professor A. Jucys

The methods to account for the correlation effects in theoretical studies of the atomic spectra by the superposition of configurations, that were developed at the Department of Theory of Atom in the Institute of Theoretical Physics and Astronomy during 50 years since the creation of multiconfiguration equations, are briefly discussed.
Keywords: multiconfiguration approach, superposition of configurations, correlation corrections, radial orbital, energy spectra
PACS: 31.10.+z, 31.25.–v


DAUGIAKONFIGŪRACINIO ARTUTINUMO TAIKYMAS ATOMINIAMS SPEKTRAMS TIRTI
P. Bogdanovich
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva


Apžvelgta daugiakonfigūracinio artutinumo metodų, sukurtų Teorinės fizikos ir astronomijos instituto Atomo teorijos skyriuje atomų bei jonų spektrinėms charakteristikoms tirti, plėtra per pastaruosius penkiasdešimt metų, pradedant nuo to laiko, kai prof. A. Jucys sukūrė daugiakonfigūracines lygtis. Trumpai aptartos tų lygčių sprendinių savybės bei galimybė juos pakeisti transformuotomis radialiosiomis orbitalėmis. Taip pat aprašyti būdai, leidžiantys efektyviai diagonalizuoti dideles energijos operatoriaus matricas, jeigu tik apatinis jų trikampis telpa kompiuterio operatyviojoje atmintyje, ir metodai, leidžiantys efektyviai parinkti pataisines konfigūracijas bei dešimtimis kartų mažinti naudojamų termų rinkinius. Aprašytų metodų taikymas iliustruotas keliais pavyzdžiais.


References / Nuorodos


[1] A. Jucys, Fock equations in a multiconfiguration approach, JETP 23, 2(8), 129–139 (1952) [in Russian]
[2] A. Bolotin and A. Jucys, Application of a multiconfiguration approach in definition of dipole strength for beryllium- and boron-like atoms, JETP 24(5), 537–544 (1953) [in Russian]
[3] V. Kaveckis and A. Jucys, Analytic single-electron wave functions in a multiconfiguration approach for beryllium- and boron-like atoms, JETP 25(3(9)), 257–263 (1953) [in Russian]
[4] V. Kybartas and A. Jucys, Solution of Fock equations for beryllium atom in two-configuration approach, JETP 25(3(9)), 264–270 (1953) [in Russian]
[5] G. Ciunaitis and A. Jucys, Two-configuration approach for 1s22s22p3s configuration of carbon atom, JETP 25(6(12)), 679–682 (1953) [in Russian]
[6] A. Jucys, V. Kybartas, and I. Glembockis, Solution of simplified Fock equations in two-configuration approach for beryllium-like atoms, JETP 27(4(10)), 425–430 (1954) [in Russian]
[7] V. Kybartas, V. Kaveckis, and A. Jucys, Self-consistent Fock field in three-configuration approach for boron atom, JETP 29(5(11)), 623–628 (1955) [in Russian]
[8] R. Karazija, Numerical solution of Hartree–Fock equations, in: Scientific Conference of Young Scientists (Vilnius, 1967) pp. 87–89 [in Russian]
[9] R. Karazija, P. Bogdanovich, and A. Jucys, On the numerical solution of Hartree–Fock equations independent of coupling sheme, Acta Phys. Hung. 27, 467–475 (1969),
http://dx.doi.org/10.1007/BF03156767
[10] P. Bogdanovich, Program for numerical solution of Hartree–Fock equations, in: Collection of Programs for the Automation of Atomic Calculations, Vol. 2 (Institute of Physics, Vilnius, 1977) 96 p. [in Russian]
[11] P. Bogdanovich and A. Jucys, Numerical solution of Hartree–Fock equations in single- and two-configuration approach, in: All-Union Seminar on Theory of Atoms and Atomic Spectra, Abstracts, Liet. Fiz. Rink. 12(4), 697 (1972) [in Russian]
[12] P. Bogdanovich and A. Jucys, Self-consistent Hartree–Fock field in tetra-configuration approach for Pr3+, in: Proceedings of All-Union Seminar on Theory of Atoms and Atomic Spectra (Moscow, 1972) pp. 64–68 [in Russian]
[13] P.O. Bogdanovich and G.L. Zukauskas, Approximate allowance for superposition of configurations in atomic spectra, Sov. Phys. – Collection 23(3), 13–25 (1983)
[14] V. Fock, Näherungsmethods zur Lösung des quantenmechanischen Mehrkörperproblems, Z. Phys. B 61, 126–148 (1930),
http://dx.doi.org/10.1007/BF01340294
[15] Ch. Froese-Fischer, The Hartree–Fock Method for Atoms (Wiley, New York, 1977) 308 p.
[16] C.F. Fischer, T. Brage, and P. Jönsson, Computational Atomic Structure. An MCHF Approach (Institute of Physics Publishing, Bristol and Philadelphia, 1997) 280 p.
[17] A. Jucys, J. Vizbaraite, T. Strockyte, and A. Bandzaitis, On multiconfiguration approach and its convergence, Opt. Spektrosk. (USSR) 12(2), 157–162 (1962) [in Russian]
[18] P. Bogdanovich, On the problem of usage of transformed functions for approach of solutions of multiconfiguration Hartree–Fock–Jucys equations, in: Processes in Inner Shells of Atoms (Moscow, Scientific Council on Spectroscopy, 1986) pp. 90–111 [in Russian]
[19] P. Bogdanovich and J. Boruta, On the numerical solution of the Hartree–Fock–Jucys equations, Sov. Phys. – Collection 16(1), 34–70 (1976)
[20] P.O. Bogdanovicius, J.I. Boruta, and J.I. Vizbaraite, Calculation of the probabilities of np5n′pnp5n′s dipole transitions for the Ne I and Ar I spectra in the two-configuration approach, Sov. Phys. – Collection 16(2), 42–45 (1976)
[21] A. Jucys, J . Vizbaraite, J. Batarunas, and V. Kaveckis, On multiconfiguration approach and its further development, Proceedings of Lithuanian Academy of Sciences B 2(14), 3–16 (1958) [in Russian]
[22] M. Bogdanovichiene and P. Bogdanovich, Solution of Hartree–Fock–Jucys equations for highly charged ions, in: 6th All-Union Conference on Theory of Atom, Abstracts (Voronezh, 1980) [in Russian]
[23] P.O. Bogdanovich, G.L. Zukauskas, and S.D. Sadziuviene, Role of atomic energy correlation corrections defined by configurations of the type n1l1N1−1n2l2N2n3l3 and n3l34l3+1n1l1N1+1n2l2N2 , Sov. Phys. – Collection 24(5), 20–27 (1984)
[24] P. Bogdanovich, G. Zhukauskas, and S. Sadziuviene, Energy spectra of rare earth elements ions accounting correlation corrections, in: Many-Particle Effects in Atoms (Moscow, Scientific Council on Spectroscopy, 1985) pp. 39–86 [in Russian]
[25] P. Bogdanovich, R. Lukoshiavichius, A. Nikitin, Z. Rudzikas, and A. Holtygin, Lines of carbon, nitrogen and oxygen ions in planetary nebulae spectra, I. Transition probabilities and oscillator strengths, Astrophysics 22(3), 551–562 (1985) [in Russian],
http://dx.doi.org/10.1007/BF01029728
[26] P.O. Bogdanovich, G.L. Zukauskas, A.P. Momkauskaite, and V.I. Tutlys, Calculation of radiation lifetimes of Ar II and Kr II energy levels, Sov. Phys. – Collection 25(6), 33–40 (1985)
[27] K. Blagoev, P. Bogdanovich, N. Dimitrov, B. Amar, A. Momkauskaite, and Z. Rudzikas, Two-electron transitions between nd8(n+1)s2nd9(n+1)p configurations in the spectra of Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Physica Scripta 41(2), 213–216 (1990),
http://dx.doi.org/10.1088/0031-8949/41/2/005
[28] P. Bogdanovich, G. Tautvaišienė, Z. Rudzikas, and A. Momkauskaitė, A simple method of accounting for correlation effects in electron transitions and its application in finding oscillator strengths and the solar abundance of zirconium, Mon. Not. R. Astron. Soc. 280, 95–102 (1996),
http://dx.doi.org/10.1093/mnras/280.1.95
[29] P. Bogdanovich, A.K. Kazansky, and V.N. Ostrovsky, Near-threshold double photoionization: Kr + γ → Kr2+(3Pe) + e + e, J. Phys. B 30, 921–940 (1997),
http://dx.doi.org/10.1088/0953-4075/30/4/013
[30] M.-C. Buchet-Poulizac, P. Bogdanovich, and E.J. Knystautas, Spectroscopic study of doubly excited levels in Ne VII∗∗ and Ne VIII∗∗, J. Phys. B
34, 233–243 (2001),
http://dx.doi.org/10.1088/0953-4075/34/3/302
[31] P. Bogdanovich, G. Gaigalas, A. Momkauskaite, and Z. Rudzikas, Accounting for admixed configurations in the second order of perturbation theory for complex atoms, Physica Scripta 56, 230–239 (1997),
http://dx.doi.org/10.1088/0031-8949/56/3/002
[32] P. Bogdanovich and P. Vaitiekunas, Calculation by dipole static polarizabilities of the light atoms and ions by the transformed functions, Sov. Phys. – Collection 25(3), 15–23 (1985)
[33] P.O. Bogdanovich, Usage of transformed functions for calculations of electric dipole transitions, Lithuanian Phys. J. 31(2), 79–83 (1991)
[34] P. Bogdanovich and G. Dushkesas, Correlation correction for the electron density at the nuclei of light atoms, Lithuanian Phys. J. 38(1), 122–126 (1998)
[35] P. Bogdanovich, S. Shadzhiuviene, and N. Piskunova, Investigation of properties of transformed radial orbitals, Lithuanian Phys. J. 38(2), 145–151 (1998)
[36] P. Bogdanovich and R. Karpushkiene, Transformed radial orbitals with a variable parameter for the configuration interaction, Lithuanian Phys. J. 39(3), 154–169 (1999)
[37] R. Karazija, Sums of Atomic Quantities and Mean Characteristics of Spectra (Mokslas, Vilnius, 1991) 272 p. [in Russian]
[38] S. Kucas, V. Jonauskas, and R. Karazija, Global characteristics of atomic spectra and their use for the analysis of spectra, IV. Configuration interaction effects, Physica Scripta 55, 667–675 (1997),
http://dx.doi.org/10.1088/0031-8949/55/6/006
[39] R. Karpuškienė, R. Karazija, and P. Bogdanovich, The average energy distance between two interacting configurations and its application for the investigation of CI in atoms, Physica Scripta 64, 333–342 (2001),
http://dx.doi.org/10.1238/Physica.Regular.064a00333
[40] P. Bogdanovich, R. Karpuškienė, and Z. Rudzikas, Calculation of electronic transitions in S IX, Physica Scripta 1999(T80B), 474–475 (1999),
http://dx.doi.org/10.1238/Physica.Topical.080a00474
[41] P. Bogdanovich, R. Karpushkiene, A. Momkauskaite, and A. Udris, Theoretical calculation of wavelengths and oscillator strengths of 2p–3l transitions in Mg V, Si VII, and S IX ions, Lithuanian J. Phys. 39(1), 9–23 (1999)
[42] P. Bogdanovich and I. Martinson, Theoretical transition probabilities for Au II, Physica Scripta 61, 142–145 (2000),
http://dx.doi.org/10.1238/Physica.Regular.061a00142
[43] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Calculation of electron transitions in the 2p3 configuration of Ar XII and Ca XIV, Lithuanian J. Phys. 40(4), 248–252 (2000)
[44] P. Bogdanovich, A. Kyniene, R. Karazija, R. Karpuškienė, and G. Gaigalas, Additional symmetry for the electronic shell in its ground state and many-electron effects, Eur. Phys. J. D 11, 175–183 (2000),
http://dx.doi.org/10.1007/s100530070081
[45] R. Karpuškienė and P. Bogdanovich, Oscillator strengths of Zn I and Zn II, Lithuanian J. Phys. 41(3), 174–176 (2001)
[46] P. Bogdanovich, R. Karpuškienė, and I. Martinson, Ab initio wavelengths and oscillator strengths for Cl X, Physica Scripta 67, 44–51 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00044
[47] P. Bogdanovich, R. Karpuškienė, and I. Martinson, Theoretical lifetimes for all states of five Cl X configurations, Nucl. Instrum. Methods B 205, 70–73 (2003),
http://dx.doi.org/10.1016/S0168-583X(02)01978-X
[48] P. Bogdanovich, R. Karpuškienė, and A. Udris, Theoretical study of the energy spectrum of the 2p33p in S IX and related electron transitions, Physica Scripta 67, 395–400 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00395
[49] R. Karpuškienė and P. Bogdanovich, Two-electron transitions and their importance for lifetimes of levels of configuration 2p43p in K XI, J. Phys. B 36, 2145–2152 (2003),
http://dx.doi.org/10.1088/0953-4075/36/11/301
[50] R. Karpuškienė, P. Bogdanovich, and A. Udris, Ab initio oscillator strengths and transition probabilities of transitions from 2s22p23l and 2s2p33l in S X, At. Data Nucl. Data Tables (in press)
[51] P. Bogdanovich and R. Karpuškienė, Numerical methods of the preliminary evaluation of the role of admixed configurations in atomic calculations, Comput. Phys. Commun. 134, 321–334 (2001),
http://dx.doi.org/10.1016/S0010-4655(00)00214-9
[52] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, A program of generation and selection of configurations for the configuration interaction method in atomic calculations SELECTCONF, Comput. Phys. Commun. (submitted)
[53] Ch. Froese Fischer, The MCHF atomic-structure package, Comput. Phys. Commun. 128, 635–636 (2000),
http://dx.doi.org/10.1016/S0010-4655(00)00009-6
[54] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some problems of calculation of energy spectra of complex atomic configurations, Comput. Phys. Commun. 143, 174–180 (2002),
http://dx.doi.org/10.1016/S0010-4655(01)00446-5
[55] P. Bogdanovich and A. Momkauskaitė, A program for generating configuration state lists in many-electron atoms, Comput. Phys. Commun. (submitted)
[56] P. Bogdanovich, S. Shadzhiuviene, and V. Tutlys, Partial diagonalization of large energy matrices, Lithuanian J. Phys. 36(4), 312–314 (1996)
[57] K. Rajnak and B.G. Wybourne, Configuration interaction effects in lN configurations, Phys. Rev. 132, 280 (1963),
http://dx.doi.org/10.1103/PhysRev.132.280
[58] B.G. Wybourne, Generalization of “Linear theory” of configuration interaction, Phys. Rev. 137, A364 (1965),
http://dx.doi.org/10.1103/PhysRev.137.A364
[59] P. Bogdanovich, G. Gaigalas, and A. Momkauskaite, Accounting for correlation corrections to interconfigurational matrix elements, Lithuanian Phys. J. 38(5), 368–374 (1998)
[60] C.F. Fischer, A general Hartree–Fock program, Comput. Phys. Commun. 43, 355–363 (1987),
http://dx.doi.org/10.1016/0010-4655(87)90053-1
[61] A. Hibbert, R. Glass, and C.F. Fischer, A general program for computing angular integrals of the Breit–Pauli Hamiltonian, Comput. Phys. Commun. 64(3), 455–472 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90138-B
[62] G. Gaigalas, The library of subroutines for calculation of matrix elements of two-particle operators for many-electron atoms, Lithuanian J. Phys. 42(2), 73–86 (2002)
[63] C.F. Fischer, M.R. Godefroid, and A. Hibbert, A program for performing angular integrations for transitions operators, Comput. Phys. Commun. 64(3), 486–500 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90140-G
[64] C.F. Fischer and M.R. Godefroid, Programs for computing LS and LSJ transitions from MCHF wave functions, Comput. Phys. Commun. 64(3), 501–519 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90141-7
[65] C. Jupén and E. Träbert, The 2p43s and 3d configurations in K XI, J. Phys. B 34, 3053–3061 (2001),
http://dx.doi.org/10.1088/0953-4075/34/15/311
[66] P. Bogdanovich, R. Karpuškienė, and A. Udris, Ab initio oscillator strengths and radiative lifetimes for Ca IX, J. Phys. B. (submitted)
[67] http://www.physics.nist.gov/cgi-bin/AtData/main_asd
[68] B.C. Fawcett, Calculated oscillator strengths and wavelengths for allowed transitions within the third shell for ions in the Mg-like isoelectronic sequence between S V and Ni XVII, At. Data Nucl. Data Tables 28, 579–596 (1983),
http://dx.doi.org/10.1016/0092-640X(83)90007-4
[69] E. Träbert et al., Beam-foil study of the lifetimes of n = 3 levels in Na-like Ca X, Mg-like Ca IX and Si-like Ca VII, J. Phys. B 29, 2647–2659 (1996),
http://dx.doi.org/10.1088/0953-4075/29/13/005
[70] S.S. Tayal, Oscillator strengths for Ar VII, Ca IX and Fe XV, J. Phys. B 19, 3421–3430 (1986),
http://dx.doi.org/10.1088/0022-3700/19/21/010
[71] U.I. Safronova, W.R. Johnson, and H.G. Berry, Excitation energies and transition rates in magnesiumlike ions, Phys. Rev. A 61, 052503-1–11 (2000),
http://dx.doi.org/10.1103/PhysRevA.61.052503