[PDF]
http://dx.doi.org/10.3952/lithjphys.44303
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 199–218 (2004)
ATOMIC THEORY METHODS FOR THE
POLARIZATION IN PHOTON AND ELECTRON INTERACTIONS WITH ATOMS
A. Kupliauskienė
Vilnius University Research Institute of Theoretical Physics
and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: akupl@itpa.lt
Received 20 February 2004
Dedicated to the 100th anniversary of Professor A. Jucys
An alternative method to the density matrix
formalism for the derivation of general expressions for the
cross-sections of the interaction of polarized atoms with
polarized photons and electrons is presented. The expression for
the cross-section describing the polarization states of all
particles taking part in the process are obtained in the form of
the expansion via irreducible tensors that have the simplest
possible behaviour under changes of directions. The ways of the
application of the general expressions suitable for the specific
experimental conditions are outlined by deriving asymmetry
parameters of the angular distributions of photoelectrons and
Auger electrons following photoionization as well as the
parameters of the angular correlations between photo- and Auger
electrons.
Keywords: photon interactions with atoms, electron scattering
PACS: 32.80.–t, 34.80.–i
ATOMO TEORIJOS METODAI ATOMŲ
SĄVEIKAI SU FOTONAIS IR ELEKTRONAIS TIRTI
A. Kupliauskienė
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
Sklaidos uždaviniuose sklaidomosios dalelės
kryptis yra apibrėžta, todėl reakcijos produktų būsenų užpildai
būdinga asimetrija šios krypties atžvilgiu. Iki šiol tokia
poliarizacija ir asimetrija buvo tiriamos tankio matricos
metodais. Prieš ketvertą metų poliarizacijos reiškiniams, kai
atomai ir jonai sąveikauja su elektronais ir fotonais, nagrinėti
buvo pritaikyti atomo teorijos metodai, kurie iki šiol buvo
taikomi izoliuotiems atomams tirti, neatsižvelgiant į išskirtą
kryptį erdvėje. Apžvelgti darbai, skirti poliarizuotų atomų
sąveikos su poliarizuotais fotonais ir elektronais skerspjūvių
bendriausioms išraiškoms nereliatyvistiniu artėjimu surasti.
Judėjimo kiekio momento grafinė technika pritaikyta šuolio
operatorių matricinių elementų kvadratams integruoti kampinių ir
sumuoti sukininių kintamųjų atžvilgiu. Skerspjūvių išraiškos
užrašytos daugialypiais sferinių multipolių skleidiniais, kadangi
sferiniai tenzoriai transformuojasi paprasčiausiai, keičiant
matavimo kryptis. Pateiktas būdas fotonų ar elektronų
spinduliuotei po atomo ar jono jonizacijos, sužadinimo ar
rekombinacijos dvipakopiu artėjimu nagrinėti.
Išnagrinėti svarbiausi plazmoje vykstantys vyksmai: atomų ir jonų
sužadinimas ir jonizacija fotonais bei elektronais, jono ir
elektrono fotorekombinacija, spinduliavimo ir Auger šuoliai
sužadintuose ir jonizuotuose atomuose. Dvipakopį vyksmą
iliustruoja dvielektronė rekombinacija. Taip pat parodyta, kaip
galima surasti skerspjūvių išraiškas konkretiems eksperimentams
aprašyti. Visų išraiškų forma paprasta, patogi kompiuterinėms
programoms rašyti.
References / Nuorodos
[1] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum
in Quantum Mechanics (Mintis, Vilnius, 1965) [in Russian]
[2] A.P. Jucys and A.J. Savukynas, Mathematical Foundations of
the Atomic Theory (Mintis, Vilnius, 1972) [in Russian]
[3] J.H. Macek, Alignment and orientation: Opening remarks, in: Atomic
Physics, Vol. 16, eds. W.E. Baylis and G.W.F. Drake (American
Institute of Physics, New York, 1999) pp. 234–236,
http://dx.doi.org/10.1063/1.59359
[4] U. Heinzmann, Experimental determination of the phase difference
of continuum wavefunctions describing the photoionization process of
xenon atoms, II. Evaluation of the matrix elements and their phase
differences and their comparison with data in the discrete spectral
range in application of the multichannel quantum defect theory, J.
Phys. B 13, 4367–4381 (1980),
http://dx.doi.org/10.1088/0022-3700/13/22/011
[5] S.A. Kazantsev and J.-C. Henoux, Polarization Spectroscopy
of Ionized Gases (Kluwer, Dordrecht/Boston/London, 1995),
http://dx.doi.org/10.1007/978-94-017-2708-2
[6] A.M. Urnov, Historical overview of plasma polarization
spectroscopy, in: Proceedings of the Japan–US Workshop on Plasma
Polarization Spectroscopy and the International Seminar on Plasma
Polarization Spectroscopy (Research International Center,
Nagoya, 1998) pp. 1–8
[7] J.C. Kieffer, J.P. Matte, H. Pèpin, M. Chaker, Y. Beoudain, T.W.
Johnston, C.H. Chien, S. Coe, G. Moorou, and J. Dubou, Electron
distribution anisotropy in laser-produced plasmas from X-ray line
polarization measurements, Phys. Rev. Lett. 68, 480–483
(1992),
http://dx.doi.org/10.1103/PhysRevLett.68.480
[8] T. Fujimoto, H. Sahara, T. Kawachi, T. Kallstenius, M. Goto, H.
Kawase, T. Furukubo, T. Mackawa, and Y. Terumichi, Polarization of
impurity emission lines from tokamak plasma, Phys. Rev. E 54,
R2240–R2243 (1996),
http://dx.doi.org/10.1103/PhysRevE.54.R2240
[9] V.A. Veretennikov, A.E. Gurei, A.N. Dolgov, V.V. Korneev, and
O.G. Semenov, The polarization of line X-ray radiation from impulse
discharge plasma, Pis'ma Zh. Eksp. Teor. Fiz. 47, 29–31
(1988)
[10] S.A. Kazantsev, The application of the self-alignment for the
astrophysical and laboratory plasma, Uspekhi Fiz. Nauk 139,
621–666 (1983),
http://dx.doi.org/10.3367/UFNr.0139.198304c.0621
[11] A. von dem Borne, T. Dohrmann, A. Verweyen, and B. Sonntag,
Dichroism in the 3p photoionization of polarized Cr atoms,
Phys. Rev. Lett. 78, 4019–4022 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.4019
[12] G. Prümper, O. Geßner, B. Zimmermann, J. Viefhaus, R. Hentger,
H. Kleinpoppen, and U. Becker, Absorption of circularly polarized
VUV radiation in polarized iron vapor, J. Phys. B 34,
2707–2714 (2001),
http://dx.doi.org/10.1088/0953-4075/34/13/312
[13] N.A. Cherepkov, V.V. Kuznetsov, and V.A. Verbitskii,
Photoionization of polarized atoms, J. Phys. B 28, 1221–1239
(1995),
http://dx.doi.org/10.1088/0953-4075/28/7/016
[14] U. Fano, Description of states in quantum mechanics by density
matrix and operator technique, Rev. Mod. Phys. 29, 74–93
(1957),
http://dx.doi.org/10.1103/RevModPhys.29.74
[15] U. Fano and J.H. Macek, Impact excitation and polarization of
the emitted light, Rev. Mod. Phys. 45, 553–573 (1973),
http://dx.doi.org/10.1103/RevModPhys.45.553
[16] V.L. Jacobs, Theory of atomic polarization measurements, J.
Phys. B 5, 2257–2271 (1972),
http://dx.doi.org/10.1088/0022-3700/5/12/019
[17] N.M. Kabachnik and I.P. Sazhina, Angular distribution and
polarization of photoelectrons in the region of resonances, J. Phys.
B 9, 1681–1697 (1976),
http://dx.doi.org/10.1088/0022-3700/9/10/014
[18] H. Klar, Polarization of fluorescence radiation following
atomic photoionization, J. Phys. B 13, 2037–2049 (1980),
http://dx.doi.org/10.1088/0022-3700/13/10/011
[19] H. Klar and H. Kleinpoppen, Angular distribution of
photoelectrons from polarized atoms exposed to polarized radiation,
J. Phys. B 15, 933–950 (1982),
http://dx.doi.org/10.1088/0022-3700/15/6/019
[20] S. Baier, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Angular
distribution of photoelectrons in resonant photoionization of
polarized atoms, J. Phys. B 27, 3363–3388 (1994),
http://dx.doi.org/10.1088/0953-4075/27/15/014
[21] A.N. Grum-Grzhimailo, K. Bartschat, N. Feuerstein, and W.
Mehlhorn, Near threshold structure in electron-collision-induced
alignment of excited atomic states, Phys. Rev. A 60,
R1751–R1754 (1994),
http://dx.doi.org/10.1103/PhysRevA.60.R1751
[22] A.N. Grum-Grzhimailo and N.M. Kabachnik, Linear magnetic
dichroism in fluorescence spectra, Phys. Lett. A 264,
192–197 (1999),
http://dx.doi.org/10.1016/S0375-9601(99)00800-2
[23] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Polarization
and Correlation Phenomena in Atomic Collisions. A Practical Theory
Course (Kluwer, New York, 2000),
http://dx.doi.org/10.1007/978-1-4757-3228-3
[24] K. Blum, Density Matrix Theory and Applications, 2nd
edn. (Plenum, New York, 1996),
http://dx.doi.org/10.1007/978-1-4757-4931-1
[25] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, General
expression of the photoionization cross-section of an atom in
polarized LS state, Lithuanian J. Phys. 40, 311–320
(2000)
[26] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, Polarization
studies in the photoionization of atoms using a graphical technique,
J. Phys. B 34, 1783–1803 (2001),
http://dx.doi.org/10.1088/0953-4075/34/9/314
[27] Z. Rudzikas, Theoretical Atomic Spectroscopy (Many-Electron
Atoms) (Cambridge University Press, Cambridge, 1997),
http://dx.doi.org/10.1017/CBO9780511524554
[28] U. Fano and D. Dill, Angular momentum transfer in the theory of
angular distributions, Phys. Rev. A 6, 185–192 (1972),
http://dx.doi.org/10.1103/PhysRevA.6.185
[29] B. Cleff and W. Mehlhorn, On the angular distribution of Auger
electrons following impact ionization, J. Phys. B 7, 593–604
(1974),
http://dx.doi.org/10.1088/0022-3700/7/5/009
[30] I.B. Levinson, Sums of the products of Wigner coefficients and
their graphical representation, Proc. Inst. Phys. Techn. 2,
17–29 (1956) [in Russian]
[31] D.M. Brink and G.R. Satchler, Angular Momentum (Oxford
University Press, Oxford, 1968),
[32] J.S. Briggs, Evaluation of matrix elements from a graphical
representation of the angular integrals, Rev. Mod. Phys. 43,
189–230 (1971),
http://dx.doi.org/10.1103/RevModPhys.43.189
[33] E. El-Baz and B. Castel, Graphical Methods of Spin Algebras
in Atomic, Nuclear and Particle Physics (Marcel Dekker,
Oxford, 1972),
[34] K.-N. Huang, Graphical evaluation of relativistic matrix
elements, Rev. Mod. Phys. 51, 215–236 (1979),
http://dx.doi.org/10.1103/RevModPhys.51.215
[35] G. Merkelis, Graphical method of evaluation of matrix elements
in the second quantization representation, Physica Scripta 63,
289–305 (2001),
http://dx.doi.org/10.1238/Physica.Regular.063a00289
[36] Ph. Golecki and H. Klar, (e, 2e) from laser-excited atoms with
spin-polarized electrons, J. Phys. B 32, 1647–1656 (1999),
http://dx.doi.org/10.1088/0953-4075/32/7/008
[37] H. Aksela, Resonant Auger spectroscopy of atoms and molecules,
J. Electr. Spectr. Relat. Phenomena 72, 235–242 (1995),
http://dx.doi.org/10.1016/0368-2048(94)02292-5
[38] K. Ueda, Y. Shimizu, H. Chiba, Y. Sato, M. Kitajima, H. Tanaka,
and N.M. Kabachnik, Experimental determination of Auger-decay
amplitudes from the angular correlations in Auger cascades following
the 2p → 4s photoexcitation of Ar, Phys. Rev. Lett. 83,
5463–5466 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.5463
[39] B. Langer, N. Berrah, A. Farhat, M. Humphrey, D. Cubaynes, A.
Menzel, and U. Becker, Angular distributions of resonant and
non-resonant Auger electrons as a test case for the validity of
spectator model: The argon L2MM case, J.
Phys. B 30, 4255–4266 (1977),
http://dx.doi.org/10.1088/0953-4075/30/19/015
[40] P. O'Keeffe, S. Aloise, M. Meyer, and A.N. Grum-Grzhimailo,
Circular polarization of ion fluorescence completing the analysis of
resonant Xe∗ 4d−1 5/26p
Auger decay, Phys. Rev. Lett. 90, 023002(4) (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.023002
[41] N.M. Kabachnik, I.P. Sazhina, and K. Ueda, Angular distribution
of Auger electrons and fluorescence in cascades and resonantly
enhanced transitions, J. Phys. B 32, 1769–1781 (1999),
http://dx.doi.org/10.1088/0953-4075/32/8/301
[42] A. Kupliauskienė, Photoexcitation of polarized atoms by
polarized radiation, Lithuanian J. Phys. 44(1), 17–26
(2004),
http://dx.doi.org/10.3952/lithjphys.44102
[43] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988),
http://dx.doi.org/10.1142/0270
[44] A. Kupliauskienė and V. Tutlys, Application of graphical
technique for Auger decay following photoionization of atoms,
Physica Scripta 67, 290–300 (2003),
http://dx.doi.org/10.1238/Physica.Regular.067a00290
[45] A. Kupliauskienė and V. Tutlys, Auger decay probability
following photoionization of atoms, Lithuanian J. Phys. 43,
27–34 (2003)
[46] A. Kupliauskienė and K. Glemža, General expression for
ionization cross-section of polarized atoms by polarized electrons,
Lithuanian J. Phys. 43, 89–97 (2003)
[47] P. Serapinas and A. Kupliauskienė, On current filament
formation in arc cathode plasma, J. Phys. D 27, 330–337
(1994),
http://dx.doi.org/10.1088/0022-3727/27/2/022
[48] A. Dorn, A. Elliott, J. Lower, E. Weigold, J. Berakdar, A.
Engelns, and H. Klar, Orientational dichroism in the electron-impact
ionization of laser-oriented atomic sodium, Phys. Rev. Lett. 80,
257–260 (1998),
http://dx.doi.org/10.1103/PhysRevLett.80.257
[49] J. Lower, E. Weigold, J. Berakdar, and S. Mazevet, Magnetic and
orbital dichroism in (e, 2e) ionization of sodium, Phys. Rev. Lett.
86, 624–627 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.624
[50] S. Gelfort, H. Kerkow, P.V. Petukhov, and E.A. Romanovskii,
Influence of Coster–Kroning transitions on the polarization of L-shell
X-rays induced by proton impact, Zh. Eksp. Teor. Fiz. 113,
2005–2010 (1998) [in Russian]
[51] E.G. Berezhko and N.M. Kabachnik, Theoretical study of
inner-shell alignment of atoms in electron impact ionization:
Angular distribution and polarization of X-rays and Auger electrons,
J. Phys. B 10, 2467–2477 (1977),
http://dx.doi.org/10.1088/0022-3700/10/12/025
[52] A. Kupliauskienė and V. Tutlys, Angular distribution and
polarization of radiation following photoionization of polarized
atoms, Physica Scripta (accepted)
[53] Y. Hann and K.J. LaGattuta, Dielectronic recombination and
related resonance processes, Physics Reports (Review Section of
Physics Letters) 166, 195–268 (1988),
http://dx.doi.org/10.1016/0370-1573(88)90021-X
[54] A.V. Kupliauskiene and R.L. Furmonavichyute, Cross-sections for
resonance charge exchange with electron excitation due to collisions
of Ca17+ with He and H2, Opt. Spektrosk.
(USSR) 71, 13–15 (1991)
[55] M. Gail, N. Grün, and W. Scheid, Angular distribution of
radiation emitted after resonant transfer and excitation, J. Phys. B
31, 4645–4654 (1998),
http://dx.doi.org/10.1088/0953-4075/31/20/021
[56] V.V. Balashov, I.V. Bondarenko, V.K. Dolinov, and S.I.
Strachova, Angular anisotropy of the cascade photons in the
dielectronic recombination of ions, Opt. Spektrosk. 77,
801–806 (1994)
[57] S. Zakowicz, W. Scheid and N. Grün, Dielectronic recombination
into hydrogen-like heavy ions with emission of two photons, J. Phys.
B 37, 131–145 (2004),
http://dx.doi.org/10.1088/0953-4075/37/1/008
[58] J. Cooper and R.N. Zare, Angular distribution of
photoelectrons, J. Chem. Phys. 48, 942–943 (1968),
http://dx.doi.org/10.1063/1.1668742
[59] D. Dill, A.F. Starace, and S.T. Manson, Effects of anisotropic
electron–ion interactions in atomic photoelectron angular
distributions, Phys. Rev. A 11, 1596–1606 (1975),
http://dx.doi.org/10.1103/PhysRevA.11.1596
[60] N.A. Cherepkov, Angular distribution of photoelectrons with
specific spin orientation, Zh. Eksp. Teor. Fiz. 65, 933–946
(1973) [in Russian]
[61] O. Plotzke, G. Prümper, B. Zimmermann, U. Becker, and H.
Kleinpoppen, Magnetic dichroism in the angular distribution of
atomic oxygen 2p photoelectrons, Phys. Rev. Lett. 77,
2642–2645 (1996),
http://dx.doi.org/10.1103/PhysRevLett.77.2642
[62] O. Hemmers et al., Dramatic nondipole effects in low-energy
photoionization: Experiment and theoretical study of Xe 5s,
Phys. Rev. Lett. 91, 053002 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.053002
[63] C. Pan and A.F. Starace, Angular distributions for
near-threshold (e, 2e) processes for Li and Mg, Phys. Rev. A 47,
2389–2392 (1993),
http://dx.doi.org/10.1103/PhysRevA.47.2389
[64] M. Streun et al., Spin dependence of (e, 2e) collisions on
lithium at 54.4 eV, J. Phys. B 31, 4401–4411 (1998),
http://dx.doi.org/10.1088/0953-4075/31/19/022
[65] S.C. McFarlane, The polarization of characteristic X-radiation
excited by electron impact, J. Phys. B 5, 1906–1915 (1972),
http://dx.doi.org/10.1088/0022-3700/5/10/020
[66] S. Flügge, W. Mehlhorn, and V. Schmidt, Angular distribution of
Auger electrons following photoionization, Phys. Rev. Lett. 29,
7–9 (1972),
http://dx.doi.org/10.1103/PhysRevLett.29.7
[67] E.G. Berezhko, N.M. Kabachnik, and V.S.Rostovsky,
Potential-barrier effects in inner-shell photoionization and their
influence on the anisotropy of X-rays and Auger electrons, J. Phys.
B 11, 1749–1758 (1978),
http://dx.doi.org/10.1088/0022-3700/11/10/012
[68] E.G. Berezhko, N.M. Kabachnik, and V.V. Sizov, The theory of
coincidence experiments on electron impact ionization of inner
atomic shells, J. Phys. B 11, 1819–1832 (1978),
http://dx.doi.org/10.1088/0022-3700/11/10/017
[69] N.M. Kabachnik and I.P. Sazhina, Angular distribution and spin
polarization of Auger electrons, J. Phys. B 17, 1335–1342
(1984),
http://dx.doi.org/10.1088/0022-3700/17/7/017
[70] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik,
Angular distribution of autoionization and Auger electrons ejected
by electron impact from laser-excited and polarized atoms, J. Phys.
B 30, 1269–1291 (1997),
http://dx.doi.org/10.1088/0953-4075/30/5/020
[71] K. Ueda, Y. Shimizu, H. Chiba, M. Kitajima, H. Tanaka, S.
Fritzsche, and N.M. Kabachnik, Experimental and theoretical study of
the Auger cascade following 2p → 4s photoexcitation in
Ar, J. Phys. B 34, 107–119 (2001),
http://dx.doi.org/10.1088/0953-4075/34/1/308
[72] K. Blum, B. Lohmann, and E. Taute, Angular distribution and
polarization of Auger electrons, J. Phys. B 19, 3815–3825
(1986),
http://dx.doi.org/10.1088/0022-3700/19/22/02
[73] U. Kleiman and B. Lohmann, Large dynamic spin polarization
parameters for diagram L3M1M4,5
Auger transitions, J. Phys. B 33, 2653–2663 (2000),
http://dx.doi.org/10.1088/0953-4075/33/14/304
[74] K. Bartschat and A.N. Grum-Grzhimailo, Vector (e, e′γ)
correlations in ionization-excitation of He by electron impact, J.
Phys. B 35, 5035–5050 (2002),
http://dx.doi.org/10.1088/0953-4075/35/24/308
[75] J. Eichler, A. Ichihara, and T. Shirai, Alignment caused by
photoionization and in radiative electron capture into excited
states of hydrogenic high-Z ions, Phys. Rev. A 58,
2128–2135 (1998),
http://dx.doi.org/10.1103/PhysRevA.58.2128
[76] J. Eichler and A. Ichihara, Polarization of photons emitted in
radiative electron capture by bare high-Z ions, Phys. Rev. A
65, 052716 (2002),
http://dx.doi.org/10.1103/PhysRevA.65.052716
[77] A. Surzhykov, S. Fritzsche, and Th. Stöhlker, Two-step
radiative recombination of polarized electrons into bare, high-Z
ions, Nucl. Instrum. Methods Phys. Res. B 205, 391–394
(2003),
http://dx.doi.org/10.1016/S0168-583X(03)00589-5
[78] P.D. Fainstein, L. Gulyas, F. Martin, and A. Salin, Angular
asymmetry of low-energy electron emission in ion-atom collisions,
Phys. Rev. A 53, 3243–3246 (1996),
http://dx.doi.org/10.1103/PhysRevA.53.3243
[79] H. Tanuma, T. Hayakawa, C. Verzani, H. Kano, H. Watanabe, B.D.
DePaola, and N. Kobayashi, Polarization spectroscopy of O5+
(1s23p) states produced in the collisions
of O6+ with He and H2, J. Phys. B 33,
5091–5098 (2000),
http://dx.doi.org/10.1088/0953-4075/33/22/310
[80] A. Kupliauskienė, On the application of relaxed-orbital and
sudden perturbation approximations for the photoionization of atoms,
J. Phys. B 34, 345–361 (2001),
http://dx.doi.org/10.1088/0953-4075/34/3/312
[81] N. Rakštikas and A. Kupliauskienė, Strong dependence of the 2p
photoionization cross sections of Na atoms on valence electron
state, Physica Scripta 58, 587–594 (1998),
http://dx.doi.org/10.1088/0031-8949/58/6/007
[82] A. Kupliauskienė and J. Lipinskaja, The peculiarities of the
angular distribution of photoelectrons from the 2p shell of
excited Na, Lithuanian J. Phys. 41, 208–212 (2001)
[83] D. Jurčiukonis and A. Kupliauskienė, Investigation of the
influence of valence electron excitation on the polarization of
photoelectrons from Na atoms, Lithuanian J. Phys. 41,
242–246 (2001)