[PDF]    http://dx.doi.org/10.3952/lithjphys.44304

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 219–236 (2004)


NON-COMMUTATIVE RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY AND ITS APPLICATIONS IN QUANTUM CHEMISTRY
V. Gineitytė
Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
Received 6 February 2004

Dedicated to the 100th anniversary of Professor A. Jucys

The review is devoted to developement and applications of the so-called non-commutative Rayleigh–Schrödinger perturbation theory (NCRSPT). As opposed to the standard RSPT used for taking into account weak interorbital interactions, the NCRSPT is aimed to account for weak interactions inside and between entire subsets of basis functions of arbitrary dimensions separated by substantial energy gaps. Accordingly, this new PT is formulated in terms of multidimensional (non-commutative) quantities, including row-matrices of basis functions corresponding to individual subsets and the so-called eigenblocks playing the role of eigenvalues. When discussing applications, the principal attention is paid to the perturbative version of the non-canonical theory of molecular orbitals based on the Brillouin theorem.
Keywords: Rayleigh–Schrödinger perturbation theory, non-canonical method of molecular orbitals, Brillouin theorem, one-electron density matrix, chemical reactivity
PACS: 31.10.+z, 31.15.Md


NEKOMUTATYVI RAYLEIGH’AUS IR SCHRÖDINGER’IO TRIKDŽIŲ TEORIJA IR JOS TAIKYMAI KVANTINĖJE CHEMIJOJE
V. Gineitytė
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva


Aptarta vadinamoji nekomutatyvi Rayleigh’aus ir Schrödinger’io trikdžių teorija ir jos taikymai. Skirtingai nuo standartinės trikdžių teorijos, įgalinančios atsižvelgti į santykinai mažas sąveikas tarp atskirų orbitalių, nekomutatyvi jos versija skirta sąveikoms tarp ištisų orbitalių rinkinių ir jų viduje tirti, nenurodant bazinių funkcijų skaičiaus juose. Todėl, pereinant nuo įprastinės prie nekomutatyvios trikdžių teorijos, vienmačiai dydžiai pakeičiami daugiamačiais dydžiais – matricomis, būtent, orbitalės ir tikrinės hamiltoniano funkcijos tampa matricomis-eilutėmis, o tiesinių kombinacijų koeficientai bei tikrinės vertės – kvadratinėmis matricomis. Hamiltono operatoriaus tikrinių verčių lygtis atitinkamai virsta tikrinių blokų lygtimi, kurioje ieškomasis tikrinis blokas nekomutuoja su apibendrinta tikrine funkcija (iš čia ir kyla teorijos pavadinimas). Bendras tokios teorijos formalizmas aptartas 2 skyriuje, o jos pagrindiniai taikymai standartinio (kanoninio) molekulinių orbitalių (MO) metodo ribose – 3 skyriuje.
Nekomutatyvios trikdžių teorijos panaudojimas pagrindinei nekanoninio MO metodo lygčiai spręsti bei iš to išplaukiantys rezultatai aptarti 4–6 skyriuose. Čia remiamasi Brillouin’o teorema, kurią taikant sudaromas hamiltoniano matricos blokinės diagonalizacijos uždavinys, o jį išsprendus, suformuluojamas vadinamasis perturbacinis nekanoninis MO metodas (4 skyrius). Jo esmę sudaro šie pagrindiniai rezultatai: 1) sąsaja tarp Brillouin’o teoremos nekanoninėms MO gauti ir komutacinės lygties vienelektronei tankio matricai, 2) nekanoninių MO, labiausiai panašių į ryšių eilių matricą, bendros išraiškos ir 3) Dewar’o formulės molekulės energijai apibendrinimas.
Perturbacinio nekanoninio MO metodo taikymai konkrečių molekulių bei jų klasių elektroninės sandaros teorijoje aptarti 5 skyriuje, o cheminio reaktyvumo teorijoje – 6 skyriuje.


References / Nuorodos


[1] L.D. Landau, E.M. Lifshits, Quantum Mechanics. Nonrelativistic Theory (Nauka, Moscow, 1974)
[2] L. Zülicke, Quantenchemie, Vol.1, Grundlagen und Algemeine Methoden (Deutscher Verlag der Wissenschaften, Berlin, 1973)
[3] W.H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, Englewood Cliffs/New York, 1978)
[4] E.N. Economou, Green's Functions in Quantum Physics (Springer-Verlag, Berlin/Heidelberg/New York, 1979),
http://dx.doi.org/10.1007/978-3-662-11900-6
[5] K. Wolinsky and P. Pulay, J. Chem. Phys. 90, 3647 (1989),
http://dx.doi.org/10.1063/1.456696
[6] K. Wolinsky, H.L. Sellers, and P. Pulay, Chem. Phys. Lett. 140, 225 (1987),
http://dx.doi.org/10.1016/0009-2614(87)80448-7
[7] P. Pulay and S. Saebo, Theor. Chim. Acta 69, 357 (1986),
http://dx.doi.org/10.1007/BF00526697
[8] S. Saebo and P. Pulay, J. Chem. Phys. 86, 914 (1987),
http://dx.doi.org/10.1063/1.452293
[9] S. Saebo and P. Pulay, J. Chem. Phys. 88, 1884 (1988),
http://dx.doi.org/10.1063/1.454111
[10] R.M. Stevens, R.M. Pitzer, and W.N. Lipscomb, J. Chem. Phys. 38, 550 (1963),
http://dx.doi.org/10.1063/1.1733693
[11] J.B. Malychanov, Zh. Strukt. Khim. 23, 134 (1982)
[12] T.C. Caves and M. Karplus, J. Chem. Phys. 50, 3649 (1969),
http://dx.doi.org/10.1063/1.1671609
[13] H.K. McDowell and R.N. Porter, J. Chem. Phys. 65, 4210 (1976),
http://dx.doi.org/10.1063/1.432828
[14] O. Dierksen and R. McWeeny, J. Chem. Phys. 44, 355 (1966),
http://dx.doi.org/10.1063/1.1727264
[15] J.L.N. Dodds and R. McWeeny, Mol. Phys. 33, 611 (1977),
http://dx.doi.org/10.1080/00268977700100561
[16] M.M. Mestetchkin, The Density Matrix Method in Quantum Chemistry (Naukova Dumka, Kiev, 1977)
[17] V. Gineityte, J. Mol. Struct. (Theochem) 491, 205 (1999),
http://dx.doi.org/10.1016/S0166-1280(99)00116-5
[18] V.L. Gineityte and D.B. Shatkovskaya, Zh. Strukt. Khim. 29, 3 (1988)
[19] V. Gineityte and D. Shatkovskaya, J. Mol. Struct. (Theochem) 201, 49 (1989),
http://dx.doi.org/10.1016/0166-1280(89)87061-7
[20] V. Gineityte and D. Shatkovskaya, Croat. Chim. Acta 62, 661 (1989)
[21] V. Gineityte and D. Shatkovskaya, Int. J. Quantum Chem. 39, 11 (1991),
http://dx.doi.org/10.1002/qua.560390104
[22] V. Gineityte, J. Mol. Struct. (Theochem) 288, 111 (1993),
http://dx.doi.org/10.1016/0166-1280(93)90100-P
[23] V. Gineityte, J. Mol. Struct. (Theochem) 333, 297 (1995),
http://dx.doi.org/10.1016/0166-1280(94)03934-D
[24] V. Gineityte, J. Mol. Struct. (Theochem) 343, 183 (1995),
http://dx.doi.org/10.1016/0166-1280(95)90555-3
[25] V. Gineityte, Int. J. Quantum Chem. 72, 559 (1999),
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:6<559::AID-QUA3>3.0.CO;2-C
[26] V. Gineityte, Int. J. Quantum Chem. 68, 119 (1998),
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:2<119::AID-QUA4>3.0.CO;2-Y
[27] V. Gineityte, Int. J. Quantum Chem. 77, 534 (2000),
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:2<534::AID-QUA5>3.0.CO;2-P
[28] P. Lankaster, Theory of Matrices (Academic Press, New York, 1969)
[29] M.J.S. Dewar and R.C. Dougherty, The PMO Theory of Organic Chemistry (Plenum Press, New York, 1975),
http://dx.doi.org/10.1007/978-1-4615-1751-1
[30] V. Gineityte, Int. J. Quantum Chem. 60, 717 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<717::AID-QUA1>3.3.CO;2-W
[31] V. Gineityte, Int. J. Quantum Chem. 81, 321 (2001); Erratum, 82, 262 (2001),
http://dx.doi.org/10.1002/qua.1054
[32] V. Gineityte, Lithuanian J. Phys. 42, 397 (2002)
[33] P.O. Löwdin, J. Chem. Phys. 19, 1396 (1951),
http://dx.doi.org/10.1063/1.1748067
[34] P.O. Löwdin, J. Mol. Spectrosc. 14, 112 (1964),
http://dx.doi.org/10.1016/0022-2852(64)90106-7
[35] P.O. Löwdin, J. Math. Phys. 6, 1341 (1965),
http://dx.doi.org/10.1063/1.1704781
[36] R. McWeeny, Methods in Molecular Quantum Mechanics, 2nd ed. (Academic Press, London, 1992),
http://dx.doi.org/10.1007/978-1-4615-7419-4_2
[37] V. Gineityte, Int. J. Quantum Chem. 53, 245 (1995),
http://dx.doi.org/10.1002/qua.560530209
[38] V. Gineityte, Int. J. Quantum Chem. 60, 743 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<743::AID-QUA3>3.0.CO;2-X
[39] V. Gineityte, Croat. Chim. Acta 71, 673 (1998)
[40] V. Gineityte, Int. J. Quantum Chem. 64, 481 (1997),
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:4<481::AID-QUA10>3.0.CO;2-8
[41] Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1977)
[42] A.A. Levin, Introduction into Quantum Chemistry of Solids (Khimia, Moscow, 1974)
[43] J.W. Verhoeven, Recl. Trav. Chim. Pays-Bas 99, 369 (1980),
http://dx.doi.org/10.1002/recl.19800991202
[44] J.W. Verhoeven and P. Pasman, Tetrahedron 37, 943 (1981),
http://dx.doi.org/10.1016/S0040-4020(01)97664-1
[45] I. Lee, Tetrahedron 39, 2409 (1983),
http://dx.doi.org/10.1016/S0040-4020(01)91967-2
[46] H.M. McConnell, J. Chem. Phys. 35, 508 (1961),
http://dx.doi.org/10.1063/1.1731961
[47] R. Hoffmann, A. Imamura, and W.H. Hehre, J. Am. Chem. Soc. 90, 1499 (1968),
http://dx.doi.org/10.1021/ja01008a018
[48] S. Huzinaga, The MO Method (Mir, Moscow, 1983)
[49] O. Chalvet (Ed.), Localization and Delocalization in Quantum Chemistry, Atoms and Molecules in the Ground State, Vol. 1 (Reidel, Dordrecht, 1975),
http://dx.doi.org/10.1007/978-94-010-1778-7
[50] X. Cao and J. Wang, Chem. Phys. Lett. 146, 41 (1988),
http://dx.doi.org/10.1016/0009-2614(88)85045-0
[51] E. Kapui, R. Daudel, and C. Kozmutza, J. Mol. Struct. (Theochem) 181, 237 (1988),
http://dx.doi.org/10.1016/0166-1280(88)80490-1
[52] W.H. Adams, J. Chem. Phys. 34, 89 (1961),
http://dx.doi.org/10.1063/1.1731622
[53] W.H. Adams, J. Chem. Phys. 37, 2009 (1962),
http://dx.doi.org/10.1063/1.1733420
[54] W.H. Adams, J. Chem. Phys. 42, 4030 (1965),
http://dx.doi.org/10.1063/1.1695877
[55] I. Mayer, Chem. Phys. Lett. 89, 390 (1982),
http://dx.doi.org/10.1016/0009-2614(82)80007-9
[56] P.R. Surjan, I. Mayer, and M. Ketesz, J. Chem. Phys. 77, 2454 (1982),
http://dx.doi.org/10.1063/1.444115
[57] I. Mayer and P.R. Surjan, J. Chem. Phys. 80, 5649 (1984),
http://dx.doi.org/10.1063/1.446631
[58] J.P. Daudey, Chem. Phys. Lett. 24, 574 (1974),
http://dx.doi.org/10.1016/0009-2614(74)80185-5
[59] V. Gineityte, J. Mol. Struct. (Theochem) 342, 219 (1995),
http://dx.doi.org/10.1016/0166-1280(95)90125-6
[60] E. Heilbronner and A. Schmelzer, Helv. Chim. Acta 58, 936 (1975),
http://dx.doi.org/10.1002/hlca.19750580331
[61] R. Hoffmann, E. Heilbronner, and R. Gleiter, J. Am. Chem. Soc. 92, 706 (1970),
http://dx.doi.org/10.1021/ja00706a051
[62] R. Hoffmann, Acc. Chem. Res. 4, 1 (1971),
http://dx.doi.org/10.1021/ar50037a001
[63] V. Gineityte, J. Mol. Struct. (Theochem) 546, 107 (2001),
http://dx.doi.org/10.1016/S0166-1280(01)00433-X
[64] V. Gineityte, J. Mol. Struct. (Theochem) 585, 15 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00028-3
[65] M.J.S. Dewar and R. Pettit, J. Chem. Soc. 1954, 1625.
http://dx.doi.org/10.1039/jr9540001625
[66] M.J.S. Dewar, J. Am. Chem. Soc. 106, 669 (1984),
http://dx.doi.org/10.1021/ja00315a036
[67] V. Gineityte, J. Mol. Struct. (Theochem) 487, 231 (1999),
http://dx.doi.org/10.1016/S0166-1280(98)00600-9
[68] V. Gineityte, J. Mol. Struct. (Theochem) 507, 253 (2000),
http://dx.doi.org/10.1016/S0166-1280(99)00397-8
[69] V.F. Traven, Electronic Structure and Properties of Organic Molecules (Khimiya, Moscow, 1989)
[70] V. Gineityte, J. Mol. Struct. (Theochem) 364, 85 (1996),
http://dx.doi.org/10.1016/0166-1280(95)04462-0
[71] V. Gineityte, J. Mol. Struct. (Theochem) 430, 97 (1998),
http://dx.doi.org/10.1016/S0166-1280(98)90223-8
[72] V. Gineityte, J. Mol. Struct. (Theochem) 497, 83 (2000),
http://dx.doi.org/10.1016/S0166-1280(99)00199-2
[73] V. Gineityte, J. Mol. Struct. (Theochem) 434, 43 (1998),
http://dx.doi.org/10.1016/S0166-1280(98)00071-2
[74] V. Gineityte, J. Mol. Struct. (Theochem) 532, 257 (2000),
http://dx.doi.org/10.1016/S0166-1280(00)00557-1
[75] D.B. Shatkovskaya, V.L. Gineityte, and A.B. Bolotin, Teor. Eksper. Khim. 2, 168 (1986)
[76] V. Gineityte and D. Shatkovskaya, Zh. Strukt. Khim. 25, 152 (1984)
[77] V. Gineityte and D. Shatkovskaya, Zh. Strukt. Khim. 26, 42 (1985)
[78] D. Satkovskiene and V. Gineityte, Int. J. Quantum Chem. 58, 453 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:5<453::AID-QUA3>3.0.CO;2-X
[79] J.A. Pople and D.P. Santry, Mol. Phys. 7, 269 (1963–1964),
http://dx.doi.org/10.1080/00268976300101031
[80] G. Bieri, J.D. Dill, E. Heilbronner, and A. Schmelzer, Helv. Chim. Acta 60, 2234 (1977),
http://dx.doi.org/10.1002/hlca.19770600715
[81] E. Heilbronner, Helv. Chim. Acta 60, 2248 (1977),
http://dx.doi.org/10.1002/hlca.19770600716
[82] E. Heilbronner, in: The Chemistry of Alkanes and Cycloalkanes, eds. S. Patai and Z. Rappoport (Wiley, New York, 1992) pp. 455–529
[83] M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw-Hill, New York, 1969)
[84] G. Strang, Linear Algebra and Its Applications (Academic Press, New York, 1976),
http://www.sciencedirect.com/book/9780126736601/linear-algebra-and-its-applications
[85] A.J. Gordon and R.A. Ford, The Chemist's Companion, The Handbook of Practical Data, Techniques and References (Wiley-Interscience, New York, 1972)
[86] P.O. Löwdin, Sven. Kem. Tidskr. 67, 380 (1955)
[87] P.O. Löwdin, Adv. Quantum Chem. 5, 185 (1970),
http://dx.doi.org/10.1016/S0065-3276(08)60339-1
[88] V. Gineityte, Int. J. Quantum Chem. 94, 302 (2003),
http://dx.doi.org/10.1002/qua.10704
[89] J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley-Interscience, New York, 1985)
[90] F.A. Carroll, Perspectives on Structure and Mechanism in Organic Chemistry (Brooks/Cole, Pacific Grove, CA, 1998)
[91] M. Edenborough, Organic Reaction Mechanisms. A Step by Step Approach (Taylor and Francis, London, 1999),
http://dx.doi.org/10.1201/9781315273181
[92] V. Gineityte, J. Mol. Struct. (Theochem) 465, 183 (1999),
http://dx.doi.org/10.1016/S0166-1280(98)00327-3
[93] V. Gineityte, J. Mol. Struct. (Theochem) 541, 1 (2001),
http://dx.doi.org/10.1016/S0166-1280(00)00628-X
[94] V. Gineityte, J. Mol. Struct. (Theochem) 663, 47 (2003),
http://dx.doi.org/10.1016/j.theochem.2003.08.063
[95] V. Gineityte, J. Mol. Struct. (Theochem) 588, 99 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00146-X
[96] A. Imamura, Mol. Phys. 15, 225 (1968),
http://dx.doi.org/10.1080/00268976800101011
[97] L. Libit and R. Hoffmann, J. Am. Chem. Soc. 96, 1370 (1974),
http://dx.doi.org/10.1021/ja00812a019
[98] M.-H. Whangbo, H.B. Schlegel, and S. Wolfe, J. Am. Chem. Soc. 99, 1296 (1977),
http://dx.doi.org/10.1021/ja00447a002
[99] L. Salem, J. Am. Chem. Soc. 90, 543 (1968),
http://dx.doi.org/10.1021/ja01005a001