[PDF]
http://dx.doi.org/10.3952/lithjphys.44304
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 219–236 (2004)
NON-COMMUTATIVE
RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY AND ITS APPLICATIONS IN
QUANTUM CHEMISTRY
V. Gineitytė
Vilnius University Research Institute of Theoretical Physics
and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
Received 6 February 2004
Dedicated to the 100th anniversary of Professor A. Jucys
The review is devoted to developement and
applications of the so-called non-commutative Rayleigh–Schrödinger
perturbation theory (NCRSPT). As opposed to the standard RSPT used
for taking into account weak interorbital interactions, the NCRSPT
is aimed to account for weak interactions inside and between
entire subsets of basis functions of arbitrary dimensions
separated by substantial energy gaps. Accordingly, this new PT is
formulated in terms of multidimensional (non-commutative)
quantities, including row-matrices of basis functions
corresponding to individual subsets and the so-called eigenblocks
playing the role of eigenvalues. When discussing applications, the
principal attention is paid to the perturbative version of the
non-canonical theory of molecular orbitals based on the Brillouin
theorem.
Keywords: Rayleigh–Schrödinger perturbation theory,
non-canonical method of molecular orbitals, Brillouin theorem,
one-electron density matrix, chemical reactivity
PACS: 31.10.+z, 31.15.Md
NEKOMUTATYVI RAYLEIGH’AUS IR
SCHRÖDINGER’IO TRIKDŽIŲ TEORIJA IR JOS TAIKYMAI KVANTINĖJE
CHEMIJOJE
V. Gineitytė
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
Aptarta vadinamoji nekomutatyvi Rayleigh’aus ir
Schrödinger’io trikdžių teorija ir jos taikymai. Skirtingai nuo
standartinės trikdžių teorijos, įgalinančios atsižvelgti į
santykinai mažas sąveikas tarp atskirų orbitalių, nekomutatyvi jos
versija skirta sąveikoms tarp ištisų orbitalių rinkinių ir jų
viduje tirti, nenurodant bazinių funkcijų skaičiaus juose. Todėl,
pereinant nuo įprastinės prie nekomutatyvios trikdžių teorijos,
vienmačiai dydžiai pakeičiami daugiamačiais dydžiais – matricomis,
būtent, orbitalės ir tikrinės hamiltoniano funkcijos tampa
matricomis-eilutėmis, o tiesinių kombinacijų koeficientai bei
tikrinės vertės – kvadratinėmis matricomis. Hamiltono operatoriaus
tikrinių verčių lygtis atitinkamai virsta tikrinių blokų lygtimi,
kurioje ieškomasis tikrinis blokas nekomutuoja su apibendrinta
tikrine funkcija (iš čia ir kyla teorijos pavadinimas). Bendras
tokios teorijos formalizmas aptartas 2 skyriuje, o jos
pagrindiniai taikymai standartinio (kanoninio) molekulinių
orbitalių (MO) metodo ribose – 3 skyriuje.
Nekomutatyvios trikdžių teorijos panaudojimas pagrindinei
nekanoninio MO metodo lygčiai spręsti bei iš to išplaukiantys
rezultatai aptarti 4–6 skyriuose. Čia remiamasi Brillouin’o
teorema, kurią taikant sudaromas hamiltoniano matricos blokinės
diagonalizacijos uždavinys, o jį išsprendus, suformuluojamas
vadinamasis perturbacinis nekanoninis MO metodas (4 skyrius). Jo
esmę sudaro šie pagrindiniai rezultatai: 1) sąsaja tarp
Brillouin’o teoremos nekanoninėms MO gauti ir komutacinės lygties
vienelektronei tankio matricai, 2) nekanoninių MO, labiausiai
panašių į ryšių eilių matricą, bendros išraiškos ir 3) Dewar’o
formulės molekulės energijai apibendrinimas.
Perturbacinio nekanoninio MO metodo taikymai konkrečių molekulių
bei jų klasių elektroninės sandaros teorijoje aptarti 5 skyriuje,
o cheminio reaktyvumo teorijoje – 6 skyriuje.
References / Nuorodos
[1] L.D. Landau, E.M. Lifshits, Quantum Mechanics.
Nonrelativistic Theory (Nauka, Moscow, 1974)
[2] L. Zülicke, Quantenchemie, Vol.1, Grundlagen und
Algemeine Methoden (Deutscher Verlag der Wissenschaften,
Berlin, 1973)
[3] W.H. Flygare, Molecular Structure and Dynamics
(Prentice-Hall, Englewood Cliffs/New York, 1978)
[4] E.N. Economou, Green's Functions in Quantum Physics
(Springer-Verlag, Berlin/Heidelberg/New York, 1979),
http://dx.doi.org/10.1007/978-3-662-11900-6
[5] K. Wolinsky and P. Pulay, J. Chem. Phys. 90, 3647
(1989),
http://dx.doi.org/10.1063/1.456696
[6] K. Wolinsky, H.L. Sellers, and P. Pulay, Chem. Phys. Lett. 140,
225 (1987),
http://dx.doi.org/10.1016/0009-2614(87)80448-7
[7] P. Pulay and S. Saebo, Theor. Chim. Acta 69, 357 (1986),
http://dx.doi.org/10.1007/BF00526697
[8] S. Saebo and P. Pulay, J. Chem. Phys. 86, 914 (1987),
http://dx.doi.org/10.1063/1.452293
[9] S. Saebo and P. Pulay, J. Chem. Phys. 88, 1884 (1988),
http://dx.doi.org/10.1063/1.454111
[10] R.M. Stevens, R.M. Pitzer, and W.N. Lipscomb, J. Chem. Phys. 38,
550 (1963),
http://dx.doi.org/10.1063/1.1733693
[11] J.B. Malychanov, Zh. Strukt. Khim. 23, 134 (1982)
[12] T.C. Caves and M. Karplus, J. Chem. Phys. 50, 3649
(1969),
http://dx.doi.org/10.1063/1.1671609
[13] H.K. McDowell and R.N. Porter, J. Chem. Phys. 65, 4210
(1976),
http://dx.doi.org/10.1063/1.432828
[14] O. Dierksen and R. McWeeny, J. Chem. Phys. 44, 355
(1966),
http://dx.doi.org/10.1063/1.1727264
[15] J.L.N. Dodds and R. McWeeny, Mol. Phys. 33, 611 (1977),
http://dx.doi.org/10.1080/00268977700100561
[16] M.M. Mestetchkin, The Density Matrix Method in Quantum
Chemistry (Naukova Dumka, Kiev, 1977)
[17] V. Gineityte, J. Mol. Struct. (Theochem) 491, 205
(1999),
http://dx.doi.org/10.1016/S0166-1280(99)00116-5
[18] V.L. Gineityte and D.B. Shatkovskaya, Zh. Strukt. Khim. 29,
3 (1988)
[19] V. Gineityte and D. Shatkovskaya, J. Mol. Struct. (Theochem) 201,
49 (1989),
http://dx.doi.org/10.1016/0166-1280(89)87061-7
[20] V. Gineityte and D. Shatkovskaya, Croat. Chim. Acta 62,
661 (1989)
[21] V. Gineityte and D. Shatkovskaya, Int. J. Quantum Chem. 39,
11 (1991),
http://dx.doi.org/10.1002/qua.560390104
[22] V. Gineityte, J. Mol. Struct. (Theochem) 288, 111
(1993),
http://dx.doi.org/10.1016/0166-1280(93)90100-P
[23] V. Gineityte, J. Mol. Struct. (Theochem) 333, 297
(1995),
http://dx.doi.org/10.1016/0166-1280(94)03934-D
[24] V. Gineityte, J. Mol. Struct. (Theochem) 343, 183
(1995),
http://dx.doi.org/10.1016/0166-1280(95)90555-3
[25] V. Gineityte, Int. J. Quantum Chem. 72, 559 (1999),
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:6<559::AID-QUA3>3.0.CO;2-C
[26] V. Gineityte, Int. J. Quantum Chem. 68, 119 (1998),
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:2<119::AID-QUA4>3.0.CO;2-Y
[27] V. Gineityte, Int. J. Quantum Chem. 77, 534 (2000),
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:2<534::AID-QUA5>3.0.CO;2-P
[28] P. Lankaster, Theory of Matrices (Academic Press, New
York, 1969)
[29] M.J.S. Dewar and R.C. Dougherty, The PMO Theory of Organic
Chemistry (Plenum Press, New York, 1975),
http://dx.doi.org/10.1007/978-1-4615-1751-1
[30] V. Gineityte, Int. J. Quantum Chem. 60, 717 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<717::AID-QUA1>3.3.CO;2-W
[31] V. Gineityte, Int. J. Quantum Chem. 81, 321 (2001);
Erratum, 82, 262 (2001),
http://dx.doi.org/10.1002/qua.1054
[32] V. Gineityte, Lithuanian J. Phys. 42, 397 (2002)
[33] P.O. Löwdin, J. Chem. Phys. 19, 1396 (1951),
http://dx.doi.org/10.1063/1.1748067
[34] P.O. Löwdin, J. Mol. Spectrosc. 14, 112 (1964),
http://dx.doi.org/10.1016/0022-2852(64)90106-7
[35] P.O. Löwdin, J. Math. Phys. 6, 1341 (1965),
http://dx.doi.org/10.1063/1.1704781
[36] R. McWeeny, Methods in Molecular Quantum Mechanics, 2nd
ed. (Academic Press, London, 1992),
http://dx.doi.org/10.1007/978-1-4615-7419-4_2
[37] V. Gineityte, Int. J. Quantum Chem. 53, 245 (1995),
http://dx.doi.org/10.1002/qua.560530209
[38] V. Gineityte, Int. J. Quantum Chem. 60, 743 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<743::AID-QUA3>3.0.CO;2-X
[39] V. Gineityte, Croat. Chim. Acta 71, 673 (1998)
[40] V. Gineityte, Int. J. Quantum Chem. 64, 481 (1997),
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:4<481::AID-QUA10>3.0.CO;2-8
[41] Ch. Kittel, Introduction to Solid State Physics (Wiley,
New York, 1977)
[42] A.A. Levin, Introduction into Quantum Chemistry of Solids
(Khimia, Moscow, 1974)
[43] J.W. Verhoeven, Recl. Trav. Chim. Pays-Bas 99, 369
(1980),
http://dx.doi.org/10.1002/recl.19800991202
[44] J.W. Verhoeven and P. Pasman, Tetrahedron 37, 943
(1981),
http://dx.doi.org/10.1016/S0040-4020(01)97664-1
[45] I. Lee, Tetrahedron 39, 2409 (1983),
http://dx.doi.org/10.1016/S0040-4020(01)91967-2
[46] H.M. McConnell, J. Chem. Phys. 35, 508 (1961),
http://dx.doi.org/10.1063/1.1731961
[47] R. Hoffmann, A. Imamura, and W.H. Hehre, J. Am. Chem. Soc. 90,
1499 (1968),
http://dx.doi.org/10.1021/ja01008a018
[48] S. Huzinaga, The MO Method (Mir, Moscow, 1983)
[49] O. Chalvet (Ed.), Localization and Delocalization in
Quantum Chemistry, Atoms and Molecules in the Ground State,
Vol. 1 (Reidel, Dordrecht, 1975),
http://dx.doi.org/10.1007/978-94-010-1778-7
[50] X. Cao and J. Wang, Chem. Phys. Lett. 146, 41 (1988),
http://dx.doi.org/10.1016/0009-2614(88)85045-0
[51] E. Kapui, R. Daudel, and C. Kozmutza, J. Mol. Struct.
(Theochem) 181, 237 (1988),
http://dx.doi.org/10.1016/0166-1280(88)80490-1
[52] W.H. Adams, J. Chem. Phys. 34, 89 (1961),
http://dx.doi.org/10.1063/1.1731622
[53] W.H. Adams, J. Chem. Phys. 37, 2009 (1962),
http://dx.doi.org/10.1063/1.1733420
[54] W.H. Adams, J. Chem. Phys. 42, 4030 (1965),
http://dx.doi.org/10.1063/1.1695877
[55] I. Mayer, Chem. Phys. Lett. 89, 390 (1982),
http://dx.doi.org/10.1016/0009-2614(82)80007-9
[56] P.R. Surjan, I. Mayer, and M. Ketesz, J. Chem. Phys. 77,
2454 (1982),
http://dx.doi.org/10.1063/1.444115
[57] I. Mayer and P.R. Surjan, J. Chem. Phys. 80, 5649
(1984),
http://dx.doi.org/10.1063/1.446631
[58] J.P. Daudey, Chem. Phys. Lett. 24, 574 (1974),
http://dx.doi.org/10.1016/0009-2614(74)80185-5
[59] V. Gineityte, J. Mol. Struct. (Theochem) 342, 219
(1995),
http://dx.doi.org/10.1016/0166-1280(95)90125-6
[60] E. Heilbronner and A. Schmelzer, Helv. Chim. Acta 58,
936 (1975),
http://dx.doi.org/10.1002/hlca.19750580331
[61] R. Hoffmann, E. Heilbronner, and R. Gleiter, J. Am. Chem. Soc.
92, 706 (1970),
http://dx.doi.org/10.1021/ja00706a051
[62] R. Hoffmann, Acc. Chem. Res. 4, 1 (1971),
http://dx.doi.org/10.1021/ar50037a001
[63] V. Gineityte, J. Mol. Struct. (Theochem) 546, 107
(2001),
http://dx.doi.org/10.1016/S0166-1280(01)00433-X
[64] V. Gineityte, J. Mol. Struct. (Theochem) 585, 15
(2002),
http://dx.doi.org/10.1016/S0166-1280(02)00028-3
[65] M.J.S. Dewar and R. Pettit, J. Chem. Soc. 1954, 1625.
http://dx.doi.org/10.1039/jr9540001625
[66] M.J.S. Dewar, J. Am. Chem. Soc. 106, 669 (1984),
http://dx.doi.org/10.1021/ja00315a036
[67] V. Gineityte, J. Mol. Struct. (Theochem) 487, 231
(1999),
http://dx.doi.org/10.1016/S0166-1280(98)00600-9
[68] V. Gineityte, J. Mol. Struct. (Theochem) 507, 253
(2000),
http://dx.doi.org/10.1016/S0166-1280(99)00397-8
[69] V.F. Traven, Electronic Structure and Properties of Organic
Molecules (Khimiya, Moscow, 1989)
[70] V. Gineityte, J. Mol. Struct. (Theochem) 364, 85
(1996),
http://dx.doi.org/10.1016/0166-1280(95)04462-0
[71] V. Gineityte, J. Mol. Struct. (Theochem) 430, 97
(1998),
http://dx.doi.org/10.1016/S0166-1280(98)90223-8
[72] V. Gineityte, J. Mol. Struct. (Theochem) 497, 83
(2000),
http://dx.doi.org/10.1016/S0166-1280(99)00199-2
[73] V. Gineityte, J. Mol. Struct. (Theochem) 434, 43
(1998),
http://dx.doi.org/10.1016/S0166-1280(98)00071-2
[74] V. Gineityte, J. Mol. Struct. (Theochem) 532, 257
(2000),
http://dx.doi.org/10.1016/S0166-1280(00)00557-1
[75] D.B. Shatkovskaya, V.L. Gineityte, and A.B. Bolotin, Teor.
Eksper. Khim. 2, 168 (1986)
[76] V. Gineityte and D. Shatkovskaya, Zh. Strukt. Khim. 25,
152 (1984)
[77] V. Gineityte and D. Shatkovskaya, Zh. Strukt. Khim. 26,
42 (1985)
[78] D. Satkovskiene and V. Gineityte, Int. J. Quantum Chem. 58,
453 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:5<453::AID-QUA3>3.0.CO;2-X
[79] J.A. Pople and D.P. Santry, Mol. Phys. 7, 269
(1963–1964),
http://dx.doi.org/10.1080/00268976300101031
[80] G. Bieri, J.D. Dill, E. Heilbronner, and A. Schmelzer, Helv.
Chim. Acta 60, 2234 (1977),
http://dx.doi.org/10.1002/hlca.19770600715
[81] E. Heilbronner, Helv. Chim. Acta 60, 2248 (1977),
http://dx.doi.org/10.1002/hlca.19770600716
[82] E. Heilbronner, in: The Chemistry of Alkanes and
Cycloalkanes, eds. S. Patai and Z. Rappoport (Wiley, New York,
1992) pp. 455–529
[83] M.J.S. Dewar, The Molecular Orbital Theory of Organic
Chemistry (McGraw-Hill, New York, 1969)
[84] G. Strang, Linear Algebra and Its Applications
(Academic Press, New York, 1976),
http://www.sciencedirect.com/book/9780126736601/linear-algebra-and-its-applications
[85] A.J. Gordon and R.A. Ford, The Chemist's Companion, The
Handbook of Practical Data, Techniques and References
(Wiley-Interscience, New York, 1972)
[86] P.O. Löwdin, Sven. Kem. Tidskr. 67, 380 (1955)
[87] P.O. Löwdin, Adv. Quantum Chem. 5, 185 (1970),
http://dx.doi.org/10.1016/S0065-3276(08)60339-1
[88] V. Gineityte, Int. J. Quantum Chem. 94, 302 (2003),
http://dx.doi.org/10.1002/qua.10704
[89] J. March, Advanced Organic Chemistry: Reactions,
Mechanisms, and Structure (Wiley-Interscience, New York, 1985)
[90] F.A. Carroll, Perspectives on Structure and Mechanism in
Organic Chemistry (Brooks/Cole, Pacific Grove, CA, 1998)
[91] M. Edenborough, Organic Reaction Mechanisms. A Step by Step
Approach (Taylor and Francis, London, 1999),
http://dx.doi.org/10.1201/9781315273181
[92] V. Gineityte, J. Mol. Struct. (Theochem) 465, 183
(1999),
http://dx.doi.org/10.1016/S0166-1280(98)00327-3
[93] V. Gineityte, J. Mol. Struct. (Theochem) 541, 1 (2001),
http://dx.doi.org/10.1016/S0166-1280(00)00628-X
[94] V. Gineityte, J. Mol. Struct. (Theochem) 663, 47
(2003),
http://dx.doi.org/10.1016/j.theochem.2003.08.063
[95] V. Gineityte, J. Mol. Struct. (Theochem) 588, 99 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00146-X
[96] A. Imamura, Mol. Phys. 15, 225 (1968),
http://dx.doi.org/10.1080/00268976800101011
[97] L. Libit and R. Hoffmann, J. Am. Chem. Soc. 96, 1370
(1974),
http://dx.doi.org/10.1021/ja00812a019
[98] M.-H. Whangbo, H.B. Schlegel, and S. Wolfe, J. Am. Chem. Soc. 99,
1296 (1977),
http://dx.doi.org/10.1021/ja00447a002
[99] L. Salem, J. Am. Chem. Soc. 90, 543 (1968),
http://dx.doi.org/10.1021/ja01005a001