[PDF]    http://dx.doi.org/10.3952/lithjphys.44406

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 275–282 (2004)


PECULIARITIES OF DEEP IMPURITY RELATED CARRIER GENERATION IN CdTe AND GaAs CRYSTALS
A. Kadys, M. Sūdžius, and K. Jarašiūnas
Department of Semiconductor Optoelectronics, Institute of Materials Science and Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: arunas.kadys@ff.vu.lt

Received 8 December 2003

Degenerate four-wave mixing in GaAs:EL2 and CdTe:V at various modulation depths and intensities of light interference field has been carried out using 10 ns duration laser pulses at 1.06 μm wavelength. We demonstrate a novel possibility of light diffraction technique, based on carrier generation by light interference pattern with different modulation depth m and varying modulation intensity. Significant decrease of diffraction efficiency at the same modulation intensity but at differentmvalue was observed in exposure characteristics of light diffraction that is attributed to exhaustion of deep trap related carrier generation. This effect is found to be characteristic of the analysed photorefractive crystals and was not observed in Si.
Keywords: four-wave mixing, deep states in semiconductors, numerical modelling
PACS: 71.55.–i, 78.20.Bh


GILIŲ LYGMENŲ ĮTAKOTI KRŪVININKŲ GENERACIJOS YPATUMAI CdTe IR GaAs KRISTALUOSE
A. Kadys, M. Sūdžius, K. Jarašiūnas
Vilniaus universitetas, Vilnius, Lietuva

Naudojant išsigimusio keturių bangų maišymo metodiką, buvo tyrinėti CdTe:V ir GaAs:EL2 tūriniai kristalai, gardelės sužadinimui ir jos nuskaitymui panaudojant 10 ns trukmės ir 1064 nm bangos ilgio lazerio šviesos impulsus. Iš rezultatų matyti, kad fotorefraktyviuose kristaluose difrakcijos efektyvumas labai priklauso nuo interferencinio lauko moduliacijos kokybės: išlaikant pastovų moduliuojantį žadinimo intensyvumą, difrakcijos efektyvumas mažėja, mažėjant moduliacijos gyliui m. Tuo tarpu ši priklausomybė Si kristale nebuvo pastebėta. Pasitelkus skaitmeninį modeliavimą, parodyta, kad, vykstant efektyviam generacijos centrų perelektrinimui šviesa, difrakcijos efektyvumo sumažėjimas, mažėjant interferencinio lauko moduliacijos gyliui, priklauso nuo generacijos kanalo išsekinimo. Šį efektą apibūdina ne tik difrakcijos efektyvumo, bet ir ekspozicinės kreivės polinkio sumažėjimas.


References / Nuorodos


[1] E. Garmire and A. Kost (eds.), Nonlinear Optics in Semiconductors, Vols. 1–2, Semiconductors and Semimetals, Vol. 59 (Academic Press, 1999)
[2] V. Kažukauskas, J. Storasta, and J.V. Vaitkus, Interaction of deep levels and potential fluctuations in scattering and recombination phenomena in semi-insulating GaAs, J. Appl. Phys. 80, 2269–2277 (1996),
http://dx.doi.org/10.1063/1.363055
[3] I. Shalish, L. Kronik, C. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, Yellow luminescence and related deep levels in unintentionally doped GaN films, Phys. Rev. B 59(15), 9748–9751 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.9748
[4] J.R. Jenny, M. Skowronski, W.C. Mitchel, H.M. Hobgood, R.C. Glass, G. Augustine, and R.H. Hopkins, On the compensation mechanism in high-resistivity 6H-SiC doped with vanadium, J. Appl. Phys. 78(6), 3839–3842 (1995),
http://dx.doi.org/10.1063/1.359899
[5] A. Edwards, D.N. Dwight, M.V. Rao, M.C. Ridgway, G. Kelner, and N. Papanicolaou, Compensation implants in 6H-SiC, J. Appl. Phys. 82(9), 4223–4227 (1997),
http://dx.doi.org/10.1063/1.366226
[6] Y.W. Zhao, Y.L. Luo, S. Fung, C.D. Beling, N.F. Sun, X.D. Chen, L.X. Cao, T.N. Sun, K.Y. Bi, and X. Wu, Native donors and compensation in Fe-doped liquid encapsulated Czochralski InP, J. Appl. Phys. 89(1), 86–90 (2001),
http://dx.doi.org/10.1063/1.1331644
[7] K. Jarasiunas, J. Vaitkus, P. Delaye, and G. Roosen, Dislocation density-dependent photorefractive effect in (001)-cut GaAs, Opt. Lett. 19(23), 1946–1948 (1994),
http://dx.doi.org/10.1364/OL.19.001946
[8] K. Jarasiunas, L. Bastiene, J.C. Launay, P. Delaye, and G. Roosen, Role of the charge state of deep vanadium impurities and associations of defects in photoelectric and optical properties of semi-insulating CdTe, Semicond. Sci. Technol. 14(1), 48–57 (1999),
http://dx.doi.org/10.1088/0268-1242/14/1/006
[9] M. Sudzius, A. Bastys, and K. Jarasiunas, Optical nonlinearities at transient quenching of EL2 defect at room temperature, Opt. Commun. 170(1–3), 149–160 (1999),
http://dx.doi.org/10.1016/S0030-4018(99)00437-X
[10] K. Jarasiunas and N. Lovergine, Characterisation of bulk crystals and structures by light-induced transient grating technique, Mat. Sci. Eng. B 91, 100–104 (2002),
http://dx.doi.org/10.1016/S0921-5107(01)00982-5
[11] M. Sūdžius, V. Gudelis, R. Aleksiejūnas, J. Storasta, K. Jarašiūnas, and A. Cola, in: Selected Papers on Optics and Photonics: Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, Proc. SPIE, Vol. 5024, eds. S.V. Svechnikov and M.Ya. Valakh (SPIE, Washington, 2003) pp. 145–156
[12] M. Sūdžius, R. Aleksiejūnas, K. Jarašiūnas, D. Verstraeten, and J.C. Launay, Investigation of nonequilibrium carrier transport in vanadium-doped CdTe and CdZnTe crystals using the time-resolved four-wave mixing technique, Semicond. Sci. Technol. 18, 367–376 (2003),
http://dx.doi.org/10.1088/0268-1242/18/4/330
[13] J. Vaitkus, E. Gaubas, K. Jarasiunas, and M. Petrauskas, Mapping of GaAs and Si wafers and ion-implanted layers by light-induced scattering and absorption of IR light, Semicond. Sci. Technol. 7(1A), A131–A134 (1992),
http://dx.doi.org/10.1088/0268-1242/7/1A/024
[14] M. Sūdžius, K. Jarašiūnas, and A. Bastys, Optical nonlinearities at deep-donor metastable transformation in GaAs, Lithuanian J. Phys. 40(1–3), 194–200 (2000)
[15] R. Aleksiejunas, M. Sudzius, and K. Jarasiunas, Direct determination of EL2 thermal recovery rate at 300 K, Opt. Commun. 198(1–3), 115–120 (2001),
http://dx.doi.org/10.1016/S0030-4018(01)01504-8
[16] A.L. Smirl, G.C. Valley, K.M. Bohnert, and T.F. Bogges, Jr., Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 μm, IEEE J. Quantum Electron. 24, 289–303 (1988),
http://dx.doi.org/10.1109/3.125
[17] C.G. Kirkpatrick, R.T. Chen, D.E. Holmes, P.M. Asbeck, K.R. Elliott, R.D. Fairman, and J.R. Oliver, in: Semiconductors and Semimetals, eds. R.K. Willardson and A.C. Beer (Academic Press, 1984) pp. 159–231,
http://dx.doi.org/10.1016/S0080-8784(08)62775-1
[18] R.K. Jain and M.B. Klein, in: Optical Phase Conjugation, ed. R.A. Fischer (Academic Press, 1983), pp. 307–415,
http://dx.doi.org/10.1016/B978-0-12-257740-6.50016-0
[19] D.W. Fischer, Photon-induced recovery of photoquenched EL2 intracenter absorption in GaAs, Appl. Phys. Lett. 50, 1751–1753 (1987),
http://dx.doi.org/10.1063/1.97736
[20] H.J. Eichler, P. Günter, and D.W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin/Heidelberg, 1986),
http://dx.doi.org/10.1007/978-3-540-39662-8
[21] J.C. Bourgoin, H.J. von Bardeleben, and D. Stiévenard, Native defects in gallium arsenide, J. Appl. Phys. 64, R65–R91 (1988),
http://dx.doi.org/10.1063/1.341206
[22] J. Dabrowski and M. Scheffler, Isolated arsenic-antisite defect in GaAs and the properties of EL2, Phys. Rev. B 40, 10391–10401 (1989),
http://dx.doi.org/10.1103/PhysRevB.40.10391
[23] H.J. Eichler and F. Massmann, Diffraction efficiency and decay times of free-carrier gratings in silicon, J. Appl. Phys. 53, 3237–3242 (1982),
http://dx.doi.org/10.1063/1.331025