[PDF]
http://dx.doi.org/10.3952/lithjphys.44406
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 275–282 (2004)
PECULIARITIES OF DEEP IMPURITY
RELATED CARRIER GENERATION IN CdTe AND GaAs CRYSTALS
A. Kadys, M. Sūdžius, and K. Jarašiūnas
Department of Semiconductor Optoelectronics, Institute of
Materials Science and Applied Research, Vilnius University,
Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: arunas.kadys@ff.vu.lt
Received 8 December 2003
Degenerate four-wave mixing in GaAs:EL2 and
CdTe:V at various modulation depths and intensities of light
interference field has been carried out using 10 ns duration laser
pulses at 1.06 μm wavelength. We demonstrate a novel
possibility of light diffraction technique, based on carrier
generation by light interference pattern with different modulation
depth m and varying modulation intensity. Significant
decrease of diffraction efficiency at the same modulation
intensity but at differentmvalue was observed in exposure
characteristics of light diffraction that is attributed to
exhaustion of deep trap related carrier generation. This effect is
found to be characteristic of the analysed photorefractive
crystals and was not observed in Si.
Keywords: four-wave mixing, deep states in semiconductors,
numerical modelling
PACS: 71.55.–i, 78.20.Bh
GILIŲ LYGMENŲ ĮTAKOTI KRŪVININKŲ
GENERACIJOS YPATUMAI CdTe IR GaAs KRISTALUOSE
A. Kadys, M. Sūdžius, K. Jarašiūnas
Vilniaus universitetas, Vilnius, Lietuva
Naudojant išsigimusio keturių bangų maišymo
metodiką, buvo tyrinėti CdTe:V ir GaAs:EL2 tūriniai kristalai,
gardelės sužadinimui ir jos nuskaitymui panaudojant 10 ns trukmės
ir 1064 nm bangos ilgio lazerio šviesos impulsus. Iš rezultatų
matyti, kad fotorefraktyviuose kristaluose difrakcijos efektyvumas
labai priklauso nuo interferencinio lauko moduliacijos kokybės:
išlaikant pastovų moduliuojantį žadinimo intensyvumą, difrakcijos
efektyvumas mažėja, mažėjant moduliacijos gyliui m. Tuo
tarpu ši priklausomybė Si kristale nebuvo pastebėta. Pasitelkus
skaitmeninį modeliavimą, parodyta, kad, vykstant efektyviam
generacijos centrų perelektrinimui šviesa, difrakcijos efektyvumo
sumažėjimas, mažėjant interferencinio lauko moduliacijos gyliui,
priklauso nuo generacijos kanalo išsekinimo. Šį efektą apibūdina
ne tik difrakcijos efektyvumo, bet ir ekspozicinės kreivės
polinkio sumažėjimas.
References / Nuorodos
[1] E. Garmire and A. Kost (eds.), Nonlinear Optics in
Semiconductors, Vols. 1–2, Semiconductors and Semimetals, Vol.
59 (Academic Press, 1999)
[2] V. Kažukauskas, J. Storasta, and J.V. Vaitkus, Interaction of
deep levels and potential fluctuations in scattering and
recombination phenomena in semi-insulating GaAs, J. Appl. Phys. 80,
2269–2277 (1996),
http://dx.doi.org/10.1063/1.363055
[3] I. Shalish, L. Kronik, C. Segal, Y. Rosenwaks, Y. Shapira, U.
Tisch, and J. Salzman, Yellow luminescence and related deep levels
in unintentionally doped GaN films, Phys. Rev. B 59(15),
9748–9751 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.9748
[4] J.R. Jenny, M. Skowronski, W.C. Mitchel, H.M. Hobgood, R.C.
Glass, G. Augustine, and R.H. Hopkins, On the compensation mechanism
in high-resistivity 6H-SiC doped with vanadium, J. Appl. Phys. 78(6),
3839–3842 (1995),
http://dx.doi.org/10.1063/1.359899
[5] A. Edwards, D.N. Dwight, M.V. Rao, M.C. Ridgway, G. Kelner, and
N. Papanicolaou, Compensation implants in 6H-SiC, J. Appl. Phys. 82(9),
4223–4227 (1997),
http://dx.doi.org/10.1063/1.366226
[6] Y.W. Zhao, Y.L. Luo, S. Fung, C.D. Beling, N.F. Sun, X.D. Chen,
L.X. Cao, T.N. Sun, K.Y. Bi, and X. Wu, Native donors and
compensation in Fe-doped liquid encapsulated Czochralski InP, J.
Appl. Phys. 89(1), 86–90 (2001),
http://dx.doi.org/10.1063/1.1331644
[7] K. Jarasiunas, J. Vaitkus, P. Delaye, and G. Roosen, Dislocation
density-dependent photorefractive effect in (001)-cut GaAs, Opt.
Lett. 19(23), 1946–1948 (1994),
http://dx.doi.org/10.1364/OL.19.001946
[8] K. Jarasiunas, L. Bastiene, J.C. Launay, P. Delaye, and G.
Roosen, Role of the charge state of deep vanadium impurities and
associations of defects in photoelectric and optical properties of
semi-insulating CdTe, Semicond. Sci. Technol. 14(1), 48–57
(1999),
http://dx.doi.org/10.1088/0268-1242/14/1/006
[9] M. Sudzius, A. Bastys, and K. Jarasiunas, Optical nonlinearities
at transient quenching of EL2 defect at room temperature, Opt.
Commun. 170(1–3), 149–160 (1999),
http://dx.doi.org/10.1016/S0030-4018(99)00437-X
[10] K. Jarasiunas and N. Lovergine, Characterisation of bulk
crystals and structures by light-induced transient grating
technique, Mat. Sci. Eng. B 91, 100–104 (2002),
http://dx.doi.org/10.1016/S0921-5107(01)00982-5
[11] M. Sūdžius, V. Gudelis, R. Aleksiejūnas, J. Storasta, K.
Jarašiūnas, and A. Cola, in: Selected Papers on Optics and
Photonics: Optical Diagnostics of Materials and Devices for Opto-,
Micro-, and Quantum Electronics, Proc. SPIE, Vol. 5024, eds.
S.V. Svechnikov and M.Ya. Valakh (SPIE, Washington, 2003) pp.
145–156
[12] M. Sūdžius, R. Aleksiejūnas, K. Jarašiūnas, D. Verstraeten, and
J.C. Launay, Investigation of nonequilibrium carrier transport in
vanadium-doped CdTe and CdZnTe crystals using the time-resolved
four-wave mixing technique, Semicond. Sci. Technol. 18,
367–376 (2003),
http://dx.doi.org/10.1088/0268-1242/18/4/330
[13] J. Vaitkus, E. Gaubas, K. Jarasiunas, and M. Petrauskas,
Mapping of GaAs and Si wafers and ion-implanted layers by
light-induced scattering and absorption of IR light, Semicond. Sci.
Technol. 7(1A), A131–A134 (1992),
http://dx.doi.org/10.1088/0268-1242/7/1A/024
[14] M. Sūdžius, K. Jarašiūnas, and A. Bastys, Optical
nonlinearities at deep-donor metastable transformation in GaAs,
Lithuanian J. Phys. 40(1–3), 194–200 (2000)
[15] R. Aleksiejunas, M. Sudzius, and K. Jarasiunas, Direct
determination of EL2 thermal recovery rate at 300 K, Opt. Commun. 198(1–3),
115–120 (2001),
http://dx.doi.org/10.1016/S0030-4018(01)01504-8
[16] A.L. Smirl, G.C. Valley, K.M. Bohnert, and T.F. Bogges, Jr.,
Picosecond photorefractive and free-carrier transient energy
transfer in GaAs at 1 μm, IEEE J. Quantum Electron. 24,
289–303 (1988),
http://dx.doi.org/10.1109/3.125
[17] C.G. Kirkpatrick, R.T. Chen, D.E. Holmes, P.M. Asbeck, K.R.
Elliott, R.D. Fairman, and J.R. Oliver, in: Semiconductors and
Semimetals, eds. R.K. Willardson and A.C. Beer (Academic
Press, 1984) pp. 159–231,
http://dx.doi.org/10.1016/S0080-8784(08)62775-1
[18] R.K. Jain and M.B. Klein, in: Optical Phase Conjugation,
ed. R.A. Fischer (Academic Press, 1983), pp. 307–415,
http://dx.doi.org/10.1016/B978-0-12-257740-6.50016-0
[19] D.W. Fischer, Photon-induced recovery of photoquenched EL2
intracenter absorption in GaAs, Appl. Phys. Lett. 50,
1751–1753 (1987),
http://dx.doi.org/10.1063/1.97736
[20] H.J. Eichler, P. Günter, and D.W. Pohl, Laser-Induced
Dynamic Gratings (Springer, Berlin/Heidelberg, 1986),
http://dx.doi.org/10.1007/978-3-540-39662-8
[21] J.C. Bourgoin, H.J. von Bardeleben, and D. Stiévenard, Native
defects in gallium arsenide, J. Appl. Phys. 64, R65–R91
(1988),
http://dx.doi.org/10.1063/1.341206
[22] J. Dabrowski and M. Scheffler, Isolated arsenic-antisite defect
in GaAs and the properties of EL2, Phys. Rev. B 40,
10391–10401 (1989),
http://dx.doi.org/10.1103/PhysRevB.40.10391
[23] H.J. Eichler and F. Massmann, Diffraction efficiency and decay
times of free-carrier gratings in silicon, J. Appl. Phys. 53,
3237–3242 (1982),
http://dx.doi.org/10.1063/1.331025