[PDF]
http://dx.doi.org/10.3952/lithjphys.44502
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 329–336 (2004)
FORMATION OF AMORPHOUS CARBON
FILMS IN PLASMA OF HYDROGEN AND HYDROCARBON MIXTURES
A. Grigonisa, Ž. Rutkūnienėa, and M.
Šilinskasb
aPhysics Department, Kaunas University of
Technology, Studentų 50, LT-51368 Kaunas, Lithuania
bInstitute of Micro- and Sensor Systems, Otto
von Guericke University, Universitätsplatz 2, 39106 Magdeburg,
Germany
Received 05 May 2004
Dedicated to the 100th anniversary of Professor K. Baršauskas
Deposition of amorphous hydrogenated carbon
(a-C:H) films in CF4, hexane (C6H14),
or acetylene (C2H2) precursors and their
mixtures with hydrogen (H2) is reported. The films were
characterized by Raman spectroscopy (RS) and X-ray spectroscopy
(XPS). RS indicates increase of the sp3/sp2
bonding ratio and disorder in graphite clusters with increasing
hydrogen content (from 0 to 50% for the acetylene precursor) in
the deposition gas mixture. The opposite trend is observed when
the hydrogen concentration exceeds 50% (for acetylene) or
additional hydrogen is used (for hexane). Formation of
polymer-like films in fluorine-containing gas plasma is observed
with additional low quantity of hydrogen (∼5%). Composition of
these films depends on treatment duration and conditions of
irradiation.
Keywords: amorphous carbon films, Raman spectroscopy, X-ray
photoelectron spectroscopy
PACS: 78.30.–j, 81.07.Bc, 81.15.Ij
AMORFINIŲ ANGLIES DANGŲ
SUDARYMAS VANDENILIO IR ANGLIAVANDENILIŲ MIŠINIŲ PLAZMOJE
A. Grigonisa, Ž. Rutkūnienėa, M.
Šilinskasb
aKauno technologijos universitetas, Kaunas, Lietuva
bOtto von Guericke universitetas, Magdeburgas,
Vokietija
Amorfinės anglies dangos buvo gaunamos iš CF4
+ H2, C2H2, C2H2
+ H2 ir C6H14 + H2
dujų mišinių. Ėsdinant silicį CF4 + H2
plazmoje, jo paviršiuje atsiranda sudėtingos sandaros danga iš
(C–CFx)n, (CH2)n
tipo polimerinių junginių ir α-SixC1−x:H:F
deimanto tipo anglies (DLC). Raman’o spektroskopija parodė, kad G
ir D juostų maksimumai labai pasislinkę mažųjų verčių pusėn,
lyginant su kitais būdais gautomis dangomis. Tą poslinkį lemia Si
priemaišos, kurių dangoje rasta iki 20%. Polimeriniai junginiai
daro dangą porėtą ir minkštą. Didinant apšvitos trukmę, danga
storėja, silicio koncentracija mažėja, mikroreljefas ir RS
duomenys artėja prie tipinių DLC dangų, gaunamų iš kitų mišinių.
Acetileno ir heksano aplinkose dangos buvo nusodinamos ant silicio
padėklų tiesioginiu jonų pluošteliu. Naudojant dujinį acetileną
galima tiksliai kontroliuoti ir daugiau keisti C2H2/H2
santykį. Dangos, gautos iš C2H2/H2
mišinio, buvo „deimantiškiausios“, kai C2H2/H2
= 1/1 ir prieš nusodinant dangą Si paviršius 10 min buvo valomas H2
plazmoje. Jei C2H2/H2 ≥ 1/5,
danga jau nesusidaro. Heksano–vandenilio aplinkoje dangos susidarė
vandenilio srautui nunešant nekontroliuojamą C6H14
garų kiekį. Jei į mišinį buvo įterpiamas papildomas vandenilio
kiekis, augimo sparta mažėjo, o esant (C6H14
+ H2)+3H2 danga nesusidarydavo. Susidariusių
DLC dangų savybės yra deimantiškiausios, kai papildomo vandenilio
nėra (t. y. C6H14 + H2) ir padėklo
temperatūra 15 °C.
References / Nuorodos
[1] N. Gopinathan, C. Robinson, and F. Ryan, Characterization and
properties of diamond-like carbon films for magnetic recording
application, Thin Solid Films 355–356, 401–405 (1999),
http://dx.doi.org/10.1016/S0040-6090(99)00668-9
[2] L.Yu. Ostrovskaya, Studies of diamond and diamond-like film
surfaces using XAES, AFM and wetting, Vacuum 68(3), 219–238
(2002),
http://dx.doi.org/10.1016/S0042-207X(02)00460-8
[3] C.L. Cheng, C.T. Chia, C.C. Chiu, and I.-N. Lin, Time-dependent
in-situ Raman observation of atomic hydrogen etching on
diamond-like carbon films, Diamond Relat. Mater. 11(2),
262–267 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00695-1
[4] J. Robertson, Requirements of ultrathin carbon coatings for
magnetic storage technology, Tribology International 36(4–6),
405–415 (2003),
http://dx.doi.org/10.1016/S0301-679X(02)00216-5
[5] J. Robertson, Improving the properties of diamond-like carbon,
Diamond Relat. Mater. 12(2), 79–84 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00006-2
[6] J. Robertson, Structural models of a-C and a-C:H, Diamond Relat.
Mater. 4(4), 297–301 (1995),
http://dx.doi.org/10.1016/0925-9635(94)05264-6
[7] T. Schwarz-Selinger, A. von Keudell, and W. Jakob, Plasma
chemical vapor deposition of hydrocarbon films: The influence of
hydrocarbon source gas on the film properties, J. Appl. Phys. 86(7),
3988–3996 (1999),
http://dx.doi.org/10.1063/1.371318
[8] A. von Keudell, T. Schwarz-Selinger, and W. Jakob, Simultaneous
interaction of methyl radicals and atomic hydrogen with amorphous
hydrogenated carbon films, J. Appl. Phys. 89(5), 2979–2986
(2001),
http://dx.doi.org/10.1063/1.1343894
[9] A. von Keudell, T. Schwarz-Selinger, M. Meier, and W. Jacob,
Direct identification of the synergism between methyl radicals and
atomic hydrogen during growth of amorphous hydrogenated carbon
films, Appl. Phys. Lett. 76(6), 676–678 (2000),
http://dx.doi.org/10.1063/1.125858
[10] M. Ban, T. Hasegawa, S. Fujii, and J. Fujioka, Stress and
structural properties of diamond-like carbon films deposited by
electron beam excited plasma CVD, Diamond Relat. Mater. 12(1),
47–56 (2003),
http://dx.doi.org/10.1016/S0925-9635(02)00265-0
[11] M.J. Paterson, An investigation of the role of hydrogen in ion
beam deposited a-C:H, Diamond Relat. Mater. 7(6), 908–915
(1998),
http://dx.doi.org/10.1016/S0925-9635(97)00329-4
[12] M.J. Paterson, Energy dependent structure changes in ion beam
deposited a-C:H, Diamond Relat. Mater. 5(12), 1407–1413
(1996),
http://dx.doi.org/10.1016/S0925-9635(96)00571-7
[13] W. Jakob, Surface reactions during growth and erosion of
hydrocarbon films, Thin Solid Films, 326(1–2), 1–42 (1998),
http://dx.doi.org/10.1016/S0040-6090(98)00497-0
[14] Ž. Rutkūnienė and A. Grigonis, Formation of polymeric layers
using halogen–carbon plasmas, Vacuum 68(3), 239–244
(2003),
http://dx.doi.org/10.1016/S0042-207X(02)00451-7
[15] A. Grigonis, M. Silinskas, and V. Kopustinskas, Investigation
of ion irradiation effects in a-SixC1−x:H
thin films, Vacuum 68(3), 257–261 (2003),
http://dx.doi.org/10.1016/S0042-207X(02)00454-2
[16] M. Silinskas and A. Grigonis, Low energy post-growth
irradiation of amorphous hydrogenated carbon (a-C:H) films, Diamond
Relat. Mater. 11(3–6), 1026–1030 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00734-8
[17] M. Silinskas, A. Grigonis, and H. Manikowski, Optical and
electron paramagnetic resonance studies of hydrogenated amorphous
carbon (a-C:H) thin films formed by direct ion beam deposition
method, Proc. SPIE 4415, 266–271 (2001),
http://dx.doi.org/10.1117/12.425504
[18] M. Horie, Plasma-structure dependence of the growth mechanism
of plasma-polymerized fluorocarbon films with residual radicals, J.
Vac. Sci. Technol. A 13(5), 2490–2497 (1995),
http://dx.doi.org/10.1116/1.579493
[19] N. Hirashita, Y. Miyakawa, K. Fujita, and J. Kanamory, Reaction
studies between fluorocarbon films and Si using
temperature-programmed X-ray photoelectron and desorption
spectroscopies, Jpn. J. Appl. Phys. 34(4B), 2137–2141
(1995),
http://dx.doi.org/10.1143/JJAP.34.2137
[20] Sh. Arai, K. Tsujimoto, and S. Tachi, Deposition in dry-etching
gas plasmas, Jpn. J. Appl. Phys. 31(6B), 2011–2019 (1992),
http://dx.doi.org/10.1143/JJAP.31.2011
[21] Practical Surface Analysis by Auger and X-Ray Photoelectron
Spectroscopy, eds. D. Brigs and M.P. Seach (UK, 1983) p. 589
[22] C. Hopf, A. von Keudell, and W. Jacob, The influence of
hydrogen ion bombardment on plasma-assisted hydrocarbon film growth,
Diamond Relat. Mater. 12(2), 85–89 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00007-4
[23] A. von Keudell, W. Jacob, and C. Hopf, Growth mechanism of
amorphous hydrogenated carbon, Diamond Relat. Mater. 11(3–6),
969–975 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00553-2
[24] J.L. Andujar, M. Vives, C. Corbella, and E. Bertran, Growth of
hydrogenated amorphous carbon films in pulsed d.c. methane
discharges, Diamond Relat. Mater. 12(2), 98–104 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00009-8