[PDF]    http://dx.doi.org/10.3952/lithjphys.44502

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 329–336 (2004)


FORMATION OF AMORPHOUS CARBON FILMS IN PLASMA OF HYDROGEN AND HYDROCARBON MIXTURES
A. Grigonisa, Ž. Rutkūnienėa, and M. Šilinskasb
aPhysics Department, Kaunas University of Technology, Studentų 50, LT-51368 Kaunas, Lithuania
bInstitute of Micro- and Sensor Systems, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany

Received 05 May 2004

Dedicated to the 100th anniversary of Professor K. Baršauskas

Deposition of amorphous hydrogenated carbon (a-C:H) films in CF4, hexane (C6H14), or acetylene (C2H2) precursors and their mixtures with hydrogen (H2) is reported. The films were characterized by Raman spectroscopy (RS) and X-ray spectroscopy (XPS). RS indicates increase of the sp3/sp2 bonding ratio and disorder in graphite clusters with increasing hydrogen content (from 0 to 50% for the acetylene precursor) in the deposition gas mixture. The opposite trend is observed when the hydrogen concentration exceeds 50% (for acetylene) or additional hydrogen is used (for hexane). Formation of polymer-like films in fluorine-containing gas plasma is observed with additional low quantity of hydrogen (∼5%). Composition of these films depends on treatment duration and conditions of irradiation.
Keywords: amorphous carbon films, Raman spectroscopy, X-ray photoelectron spectroscopy
PACS: 78.30.–j, 81.07.Bc, 81.15.Ij


AMORFINIŲ ANGLIES DANGŲ SUDARYMAS VANDENILIO IR ANGLIAVANDENILIŲ MIŠINIŲ PLAZMOJE
A. Grigonisa, Ž. Rutkūnienėa, M. Šilinskasb
aKauno technologijos universitetas, Kaunas, Lietuva
bOtto von Guericke universitetas, Magdeburgas, Vokietija

Amorfinės anglies dangos buvo gaunamos iš CF4 + H2, C2H2, C2H2 + H2 ir C6H14 + H2 dujų mišinių. Ėsdinant silicį CF4 + H2 plazmoje, jo paviršiuje atsiranda sudėtingos sandaros danga iš (C–CFx)n, (CH2)n tipo polimerinių junginių ir α-SixC1−x:H:F deimanto tipo anglies (DLC). Raman’o spektroskopija parodė, kad G ir D juostų maksimumai labai pasislinkę mažųjų verčių pusėn, lyginant su kitais būdais gautomis dangomis. Tą poslinkį lemia Si priemaišos, kurių dangoje rasta iki 20%. Polimeriniai junginiai daro dangą porėtą ir minkštą. Didinant apšvitos trukmę, danga storėja, silicio koncentracija mažėja, mikroreljefas ir RS duomenys artėja prie tipinių DLC dangų, gaunamų iš kitų mišinių. Acetileno ir heksano aplinkose dangos buvo nusodinamos ant silicio padėklų tiesioginiu jonų pluošteliu. Naudojant dujinį acetileną galima tiksliai kontroliuoti ir daugiau keisti C2H2/H2 santykį. Dangos, gautos iš C2H2/H2 mišinio, buvo „deimantiškiausios“, kai C2H2/H2 = 1/1 ir prieš nusodinant dangą Si paviršius 10 min buvo valomas H2 plazmoje. Jei C2H2/H2 ≥ 1/5, danga jau nesusidaro. Heksano–vandenilio aplinkoje dangos susidarė vandenilio srautui nunešant nekontroliuojamą C6H14 garų kiekį. Jei į mišinį buvo įterpiamas papildomas vandenilio kiekis, augimo sparta mažėjo, o esant (C6H14 + H2)+3H2 danga nesusidarydavo. Susidariusių DLC dangų savybės yra deimantiškiausios, kai papildomo vandenilio nėra (t. y. C6H14 + H2) ir padėklo temperatūra 15 °C.


References / Nuorodos


[1] N. Gopinathan, C. Robinson, and F. Ryan, Characterization and properties of diamond-like carbon films for magnetic recording application, Thin Solid Films 355–356, 401–405 (1999),
http://dx.doi.org/10.1016/S0040-6090(99)00668-9
[2] L.Yu. Ostrovskaya, Studies of diamond and diamond-like film surfaces using XAES, AFM and wetting, Vacuum 68(3), 219–238 (2002),
http://dx.doi.org/10.1016/S0042-207X(02)00460-8
[3] C.L. Cheng, C.T. Chia, C.C. Chiu, and I.-N. Lin, Time-dependent in-situ Raman observation of atomic hydrogen etching on diamond-like carbon films, Diamond Relat. Mater. 11(2), 262–267 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00695-1
[4] J. Robertson, Requirements of ultrathin carbon coatings for magnetic storage technology, Tribology International 36(4–6), 405–415 (2003),
http://dx.doi.org/10.1016/S0301-679X(02)00216-5
[5] J. Robertson, Improving the properties of diamond-like carbon, Diamond Relat. Mater. 12(2), 79–84 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00006-2
[6] J. Robertson, Structural models of a-C and a-C:H, Diamond Relat. Mater. 4(4), 297–301 (1995),
http://dx.doi.org/10.1016/0925-9635(94)05264-6
[7] T. Schwarz-Selinger, A. von Keudell, and W. Jakob, Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties, J. Appl. Phys. 86(7), 3988–3996 (1999),
http://dx.doi.org/10.1063/1.371318
[8] A. von Keudell, T. Schwarz-Selinger, and W. Jakob, Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films, J. Appl. Phys. 89(5), 2979–2986 (2001),
http://dx.doi.org/10.1063/1.1343894
[9] A. von Keudell, T. Schwarz-Selinger, M. Meier, and W. Jacob, Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films, Appl. Phys. Lett. 76(6), 676–678 (2000),
http://dx.doi.org/10.1063/1.125858
[10] M. Ban, T. Hasegawa, S. Fujii, and J. Fujioka, Stress and structural properties of diamond-like carbon films deposited by electron beam excited plasma CVD, Diamond Relat. Mater. 12(1), 47–56 (2003),
http://dx.doi.org/10.1016/S0925-9635(02)00265-0
[11] M.J. Paterson, An investigation of the role of hydrogen in ion beam deposited a-C:H, Diamond Relat. Mater. 7(6), 908–915 (1998),
http://dx.doi.org/10.1016/S0925-9635(97)00329-4
[12] M.J. Paterson, Energy dependent structure changes in ion beam deposited a-C:H, Diamond Relat. Mater. 5(12), 1407–1413 (1996),
http://dx.doi.org/10.1016/S0925-9635(96)00571-7
[13] W. Jakob, Surface reactions during growth and erosion of hydrocarbon films, Thin Solid Films, 326(1–2), 1–42 (1998),
http://dx.doi.org/10.1016/S0040-6090(98)00497-0
[14] Ž. Rutkūnienė and A. Grigonis, Formation of polymeric layers using halogencarbon plasmas, Vacuum 68(3), 239–244 (2003),
http://dx.doi.org/10.1016/S0042-207X(02)00451-7
[15] A. Grigonis, M. Silinskas, and V. Kopustinskas, Investigation of ion irradiation effects in a-SixC1−x:H thin films, Vacuum 68(3), 257–261 (2003),
http://dx.doi.org/10.1016/S0042-207X(02)00454-2
[16] M. Silinskas and A. Grigonis, Low energy post-growth irradiation of amorphous hydrogenated carbon (a-C:H) films, Diamond Relat. Mater. 11(3–6), 1026–1030 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00734-8
[17] M. Silinskas, A. Grigonis, and H. Manikowski, Optical and electron paramagnetic resonance studies of hydrogenated amorphous carbon (a-C:H) thin films formed by direct ion beam deposition method, Proc. SPIE 4415, 266–271 (2001),
http://dx.doi.org/10.1117/12.425504
[18] M. Horie, Plasma-structure dependence of the growth mechanism of plasma-polymerized fluorocarbon films with residual radicals, J. Vac. Sci. Technol. A 13(5), 2490–2497 (1995),
http://dx.doi.org/10.1116/1.579493
[19] N. Hirashita, Y. Miyakawa, K. Fujita, and J. Kanamory, Reaction studies between fluorocarbon films and Si using temperature-programmed X-ray photoelectron and desorption spectroscopies, Jpn. J. Appl. Phys. 34(4B), 2137–2141 (1995),
http://dx.doi.org/10.1143/JJAP.34.2137
[20] Sh. Arai, K. Tsujimoto, and S. Tachi, Deposition in dry-etching gas plasmas, Jpn. J. Appl. Phys. 31(6B), 2011–2019 (1992),
http://dx.doi.org/10.1143/JJAP.31.2011
[21] Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, eds. D. Brigs and M.P. Seach (UK, 1983) p. 589
[22] C. Hopf, A. von Keudell, and W. Jacob, The influence of hydrogen ion bombardment on plasma-assisted hydrocarbon film growth, Diamond Relat. Mater. 12(2), 85–89 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00007-4
[23] A. von Keudell, W. Jacob, and C. Hopf, Growth mechanism of amorphous hydrogenated carbon, Diamond Relat. Mater. 11(3–6), 969–975 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00553-2
[24] J.L. Andujar, M. Vives, C. Corbella, and E. Bertran, Growth of hydrogenated amorphous carbon films in pulsed d.c. methane discharges, Diamond Relat. Mater. 12(2), 98–104 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00009-8