[PDF]
http://dx.doi.org/10.3952/lithjphys.44504
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 353–358 (2004)
EFFECT OF MAGNETRON TARGET
TEMPERATURE ON DEPOSITION RATE AND STRUCTURE OF Zr–ZrO2
THIN FILMS
J. Čyvienė, M. Laurikaitis, and J. Dudonis
Kaunas University of Technology, Studentų 50, LT-51368 Kaunas,
Lithuania
E-mail: jurgita.cyviene@ktu.lt
Received 26 May 2004
Dedicated to the 100th anniversary of Professor K. Baršauskas
The influence of temperature of zirconium
target on the process of reactive magnetron sputtering has been
investigated in this work. Two processes have been studied: when
the magnetron Zr target was not cooled in a common way, but
thermally isolated from the magnetron cathode (“hot” target), and
when the magnetron Zr target was cooled with water flow (“cold”
target). First, current–voltage characteristics of Zr metal target
were measured for the two cases when oxygen partial pressure is
constant, and dependences of magnetron cathode voltage on partial
pressure of oxygen, when magnetron discharge current is constant.
Dependences of the film deposition rate on partial pressure of
oxygen have also been measured. After complete analysis of the
influence of the target temperature on this process of reactive
magnetron sputtering, ZrO2 thin films were deposited on
Si(111) substrates. The structure of films was investigated by
XRD.
Keywords: reactive magnetron sputtering, zirconia
PACS: 81.15.Cd
MAGNETRONO KATODO TEMPERATŪROS
ĮTAKA Zr–ZrO2 PLONŲ SLUOKSNIŲ NUSODINIMO SPARTAI IR
JŲ SANDARAI
J. Čyvienė, M. Laurikaitis, J. Dudonis
Kauno technologijos universitetas, Kaunas, Lietuva
Tirtas reaktyvinis magnetroninis nusodinimas,
esant įvairiai Zr katodo temperatūrai. Katodo temperatūra buvo
keičiama nusodinant sluoksnius magnetronu, kurio katodas buvo
tiesiogiai šaldomas vandeniu („šaltas“ katodas), arba naudojant
šilumiškai izoliuotą katodą („karštas“ katodas). Pirmuoju atveju
taikinio temperatūra siekė 30–50 °C, antru – 900–980 °C. Buvo
išmatuotos magnetrono katodo (Zr) voltamperinės priklausomybės
esant „šaltam“ ir „karštam“ katodui, kai deguonies dalinis slėgis
pastovus, magnetrono katodo įtampos priklausomybės nuo deguonies
dalinio slėgio, kai išlydžio srovės stipris pastovus, bei
sluoksnių nusodinimo spartos priklausomybė nuo dalinio deguonies
slėgio. Ištyrus magnetrono katodo temperatūros įtaką reaktyviniam
nusodinimui, ZrO2 ploni sluoksniai buvo nusodinti ant
Si(111) padėklų. Sluoksnių sandaros buvo ištirtos, remiantis
Röntgen’o difrakcine analize.
References / Nuorodos
[1] S. Collard, H. Kupfer, W. Hoyer, and G. Hecht, Growth of
nitrogen stabilised cubic ZrO2 phase by reactive
magnetron sputtering using two reactive gases, Vacuum 55,
153–157 (1999),
http://dx.doi.org/10.1016/S0042-207X(99)00142-6
[2] P. Baumeister and O. Arnon, Use of hafnium dioxide in multilayer
dielectric reflector for the near UV, Appl. Opt. 16, 439–444
(1977),
http://dx.doi.org/10.1364/AO.16.000439
[3] S.M. Meier and D.K. Gupta, J. Eng. Gas Turbines Power, Trans.
ASME 116, 250 (1994),
http://dx.doi.org/10.1115/1.2906801
[4] S.J. Wang, C.K. Ong, S.Y. Xu, and P. Chen, Crystalline zirconia
oxide on silicon as alternative gate dielectrics, Appl. Phys. Lett.
78(11), 1604–1607 (2001),
http://dx.doi.org/10.1063/1.1354161
[5] J. Will, A. Mitterdorfer, C. Kleinlogel, and D. Perednis,
Fabrication of thin electrolytes for second-generation solid oxide
fuel cells, Solid State Ionics 131, 79–96 (2000),
http://dx.doi.org/10.1016/S0167-2738(00)00624-X
[6] M. Boulouz, A. Boulouz, A. Giani, and A. Boyer, Influence of
substrate temperature and target composition on the properties of
yttria-stabilised zirconia thin films grown by reactive magnetron
sputtering, Thin Solid Films 323, 85–92 (1998),
http://dx.doi.org/10.1016/S0040-6090(97)01053-5
[7] M. Žadvydas, S. Tamulevičius, and K. Šlapikas, Application of
plasma sputtering, in: Modern Materials and Technologies,
Materials of the Republican Conference (Palanga, 2002) p. 52
[in Lithuanian]
[8] R.E. Hummer and K.H. Günther, Thin Films for Optical
Coatings (CRC Press, 1995)
[9] A. Guinier, R. Jullien, and W.J. Dreffin, The Solid State,
From Superconductors to Superalloys (Oxford University Press,
1989) p. 280
[10] E.G. Kalashnikov, Electricity (Moscow, 1977) p. 589 [in
Russian]
[11] E.W. Daniel, Collision Phenomena in Ionized Gases
(Willey, New York/London/Sydney, 1964) p. 832