[PDF]
http://dx.doi.org/10.3952/lithjphys.44507
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 367–373 (2004)
HYDROGENATION OF MgAl FILMS IN
PLASMA
L. Pranevičiusa, D. Milčiusb, and L.L.
Pranevičiusa
aVytautas Magnus University, Vileikos 8, LT-44404
Kaunas, Lithuania
E-mail: Liudvikas_Pranevicius@fc.vdu.lt
bLithuanian Energy Institute, Breslaujos 3,
LT-44403 Kaunas, Lithuania
Received 26 May 2004
Dedicated to the 100th anniversary of Professor K. Baršauskas
Hydriding of MgAl films has been performed in
two ways: (i) ion implantation of 100 eV hydrogen ions into the
growing film, and (ii) hydrogenation of Mg17Al12
films under high-flux, low-energy hydrogen ion irradiation in H2+Ar
plasma. The X-ray diffraction studies of phase transitions and
structure modifications were carried out. The samples, which were
hydrogenated by ion implantation during the deposition of MgAl
film, show magnesium alanate, Mg(AlH4)2,
phase. It decomposes at temperatures above 80 °C. The samples
hydrogenated in H2+Ar plasma show Mg(AlH4)2,
Mg2Al3, MgH2, and Al phases. It
is concluded that sputtering induced by Ar ion bombardment during
hydrogenation in H2+Ar plasma limits the supply rate of
hydrogen from the surface into the bulk. Experimentally registered
synthesis of new phases and restructuring are explained on the
basis of long-range transport of metal species, and the role of
grain boundaries is emphasized in the mechanism of hydriding.
Keywords: hydrogen storage, hydrides, physical vapour
deposition, X-ray diffraction
PACS: 68.55.Ln, 68.55.Nq, 34.50.Dy
MgAl PLĖVELIŲ SODRINIMAS
VANDENILIU PLAZMOJE
L. Pranevičiusa, D. Milčiusb, L.L.
Pranevičiusa
aVytauto Didžiojo universitetas, Kaunas, Lietuva
bLietuvos energetikos institutas, Kaunas,
Lietuva
MgAl plėvelių sodrinimo vandenilio atomais ir
molekulėmis kinetikos tyrimas buvo atliktas dviem būdais: a)
implantuojant vandenilio jonus su energija 100 eV į augančią
plėvelę, ir b) apspinduliavus Mg17Al12
plėvelę intensyviais mažų energijų vandenilio jonų srautais
panaudojant H2+Ar plazmą. Faziniai ir struktūriniai
virsmai plėvelėse buvo tiriami γ spindulių difraktometru, o
paviršiaus morfologija – skenuojančiu elektroniniu mikroskopu.
Rasta, kad MgAl plėvelėse, nusodintose su vienalaike vandenilio
jonų implantacija, dominuoja Mg(AlH4)2
cheminis junginys, kuris susiskaido į MgH2 ir Al prie
didesnių nei 80 °C temperatūrų. Plėvelėse, kurios buvo sodrinamos
vandeniliu panaudojant joninę spinduliuotę iš H2+Ar
plazmos, rasti Mg(AlH4)2, MgH2,
Mg2Al3 ir Al dariniai. Daroma išvada, kad
joninės spinduliuotės metu Ar jonai riboja vandenilio įtekėjimą į
medžiagos tūrį, o tuo pačiu ir sintezės reakciją.
Stebėti eksperimentiniai rezultatai aiškinami, padarius prielaidas
apie atomų judėjimą dideliais atstumais sodrinimo metu ir
tarpkristalinės masės pernašos nanokristalinėse plėvelėse svarbią
įtaką hidridų susidarymo mechanizmui.
References / Nuorodos
[1] G. Majer, U. Eberle, F. Kimmerle, E. Stanik, and S. Orimo,
Hydrogen diffusion in metallic and nanostructured materials, Physica
B 328, 81–89 (2003),
http://dx.doi.org/10.1016/S0921-4526(02)01815-X
[2] R. Haugsrud, On high temperature oxidation of nickel, Corrosion
Science 45, 211–235 (2003),
http://dx.doi.org/10.1016/S0010-938X(02)00085-9
[3] S. Orimo, K. Ikeda, H. Fujii, Y. Fujikawa, Y. Kitano, and K.
Yamamoto, Structural and hydriding properties of the Mg–Ni–H system
with nano- and/or amorphous structures, Acta Mater. 45,
2271–2278 (1997),
http://dx.doi.org/10.1016/S1359-6454(96)00357-6
[4] L. Zaluski, A. Zaluska, and J.O. Strom-Olsem, Hydrogen
absorption in nanocrystalline Mg2Ni formed by mechanical
alloying, J. Alloys Comp. 217, 245–249 (1995),
http://dx.doi.org/10.1016/0925-8388(94)01348-9
[5] K. Higuchi, K. Yamamoto, H. Kajioka, K. Toiyama, M. Honda, S.
Orimo, and H. Fuji, Remarkable hydrogen storage properties in
three-layered Pd/Mg/Pd thin films, J. Alloys Comp. 330–332,
526–530 (2002),
http://dx.doi.org/10.1016/S0925-8388(01)01542-0
[6] L. Pranevicius, D. Milcius, L.L. Pranevicius, and G. Thomas,
Plasma hydrogenation of Al, Mg and MgAl films under high-flux ion
irradiation at elevated temperature, J. Alloys Comp. 373,
9–15 (2004),
http://dx.doi.org/10.1016/j.jallcom.2003.10.029
[7] H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures
for Polycrystalline and Amorphous Materials (Wiley, New York,
1974)
[8] A.A. Nayeb-Hashemi and J.B. Clark (eds.), Phase Diagrams of
Binary Magnesium Alloys (ASM International, 1998)
[9] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, and R.
Schultz, Hydriding behavior of Mg–Al and leached Mg–Al compounds
prepared by high-energy ball milling, J. Alloys Comp. 297,
282–293 (2000),
http://dx.doi.org/10.1016/S0925-8388(99)00612-X
[10] K.J. Gross, E.H. Majzoub, and S.W. Spangler, The effects of
titanium precursors on hydriding properties of alanates, J. Alloys
Comp. 356–357, 423–428 (2003),
http://dx.doi.org/10.1016/S0925-8388(03)00141-5
[11] K.J. Gross, S.E. Guthrie, S. Takara, and G.J. Thomas, In-situ
X-ray diffraction study of the decomposition of NaAlH4,
J. Alloys Comp. 297, 270–281 (2000),
http://dx.doi.org/10.1016/S0925-8388(99)00598-8
[12] D. Milcius, C. Templier, J.-P. Riviere, L.L. Pranevicius, and
L. Pranevicius, High-flux, low-energy implantation effects on the
composition of the altered layer, Surf. Coating Technol. 156(1–3),
214–218 (2002),
http://dx.doi.org/10.1016/S0257-8972(02)00090-7
[13] L. Pranevicius, C. Templier, J. Delafond, and S. Muzard,
Simulation of interface effects during simultaneous deposition and
ion irradiation, Surf. Coating Technol. 72, 51–61 (1995),
http://dx.doi.org/10.1016/0257-8972(94)02330-S
[14] L. Pranevicius, Coating Technology: Ion Beam Deposition
(Satas & Associates, Warwick, 1993)
[15] P. Fielitz, G. Borcardt, M. Schmücker, H. Schneider, and P.
Willich, Measurement of oxygen grain boundary diffusion in mullite
ceramics by SIMS depth profiling, Appl. Surf. Sci. 9248, 1–5
(2002),
http://dx.doi.org/10.1016/S0169-4332(02)00641-4
[16] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, and R.
Schulz, Hydriding behavior of Mg–Al and leached Mg–Al compounds
prepared by high-energy ball-milling, J. Alloys Comp. 297,
282–293 (2000),
http://dx.doi.org/10.1016/S0925-8388(99)00612-X