[PDF]    http://dx.doi.org/10.3952/lithjphys.44507

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 367–373 (2004)


HYDROGENATION OF MgAl FILMS IN PLASMA
L. Pranevičiusa, D. Milčiusb, and L.L. Pranevičiusa
aVytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
E-mail: Liudvikas_Pranevicius@fc.vdu.lt
bLithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania

Received 26 May 2004

Dedicated to the 100th anniversary of Professor K. Baršauskas

Hydriding of MgAl films has been performed in two ways: (i) ion implantation of 100 eV hydrogen ions into the growing film, and (ii) hydrogenation of Mg17Al12 films under high-flux, low-energy hydrogen ion irradiation in H2+Ar plasma. The X-ray diffraction studies of phase transitions and structure modifications were carried out. The samples, which were hydrogenated by ion implantation during the deposition of MgAl film, show magnesium alanate, Mg(AlH4)2, phase. It decomposes at temperatures above 80 °C. The samples hydrogenated in H2+Ar plasma show Mg(AlH4)2, Mg2Al3, MgH2, and Al phases. It is concluded that sputtering induced by Ar ion bombardment during hydrogenation in H2+Ar plasma limits the supply rate of hydrogen from the surface into the bulk. Experimentally registered synthesis of new phases and restructuring are explained on the basis of long-range transport of metal species, and the role of grain boundaries is emphasized in the mechanism of hydriding.
Keywords: hydrogen storage, hydrides, physical vapour deposition, X-ray diffraction
PACS: 68.55.Ln, 68.55.Nq, 34.50.Dy


MgAl PLĖVELIŲ SODRINIMAS VANDENILIU PLAZMOJE
L. Pranevičiusa, D. Milčiusb, L.L. Pranevičiusa
aVytauto Didžiojo universitetas, Kaunas, Lietuva
bLietuvos energetikos institutas, Kaunas, Lietuva

MgAl plėvelių sodrinimo vandenilio atomais ir molekulėmis kinetikos tyrimas buvo atliktas dviem būdais: a) implantuojant vandenilio jonus su energija 100 eV į augančią plėvelę, ir b) apspinduliavus Mg17Al12 plėvelę intensyviais mažų energijų vandenilio jonų srautais panaudojant H2+Ar plazmą. Faziniai ir struktūriniai virsmai plėvelėse buvo tiriami γ spindulių difraktometru, o paviršiaus morfologija – skenuojančiu elektroniniu mikroskopu. Rasta, kad MgAl plėvelėse, nusodintose su vienalaike vandenilio jonų implantacija, dominuoja Mg(AlH4)2 cheminis junginys, kuris susiskaido į MgH2 ir Al prie didesnių nei 80 °C temperatūrų. Plėvelėse, kurios buvo sodrinamos vandeniliu panaudojant joninę spinduliuotę iš H2+Ar plazmos, rasti Mg(AlH4)2, MgH2, Mg2Al3 ir Al dariniai. Daroma išvada, kad joninės spinduliuotės metu Ar jonai riboja vandenilio įtekėjimą į medžiagos tūrį, o tuo pačiu ir sintezės reakciją.
Stebėti eksperimentiniai rezultatai aiškinami, padarius prielaidas apie atomų judėjimą dideliais atstumais sodrinimo metu ir tarpkristalinės masės pernašos nanokristalinėse plėvelėse svarbią įtaką hidridų susidarymo mechanizmui.


References / Nuorodos


[1] G. Majer, U. Eberle, F. Kimmerle, E. Stanik, and S. Orimo, Hydrogen diffusion in metallic and nanostructured materials, Physica B 328, 81–89 (2003),
http://dx.doi.org/10.1016/S0921-4526(02)01815-X
[2] R. Haugsrud, On high temperature oxidation of nickel, Corrosion Science 45, 211–235 (2003),
http://dx.doi.org/10.1016/S0010-938X(02)00085-9
[3] S. Orimo, K. Ikeda, H. Fujii, Y. Fujikawa, Y. Kitano, and K. Yamamoto, Structural and hydriding properties of the Mg–Ni–H system with nano- and/or amorphous structures, Acta Mater. 45, 2271–2278 (1997),
http://dx.doi.org/10.1016/S1359-6454(96)00357-6
[4] L. Zaluski, A. Zaluska, and J.O. Strom-Olsem, Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying, J. Alloys Comp. 217, 245–249 (1995),
http://dx.doi.org/10.1016/0925-8388(94)01348-9
[5] K. Higuchi, K. Yamamoto, H. Kajioka, K. Toiyama, M. Honda, S. Orimo, and H. Fuji, Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films, J. Alloys Comp. 330–332, 526–530 (2002),
http://dx.doi.org/10.1016/S0925-8388(01)01542-0
[6] L. Pranevicius, D. Milcius, L.L. Pranevicius, and G. Thomas, Plasma hydrogenation of Al, Mg and MgAl films under high-flux ion irradiation at elevated temperature, J. Alloys Comp. 373, 9–15 (2004),
http://dx.doi.org/10.1016/j.jallcom.2003.10.029
[7] H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)
[8] A.A. Nayeb-Hashemi and J.B. Clark (eds.), Phase Diagrams of Binary Magnesium Alloys (ASM International, 1998)
[9] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, and R. Schultz, Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball milling, J. Alloys Comp. 297, 282–293 (2000),
http://dx.doi.org/10.1016/S0925-8388(99)00612-X
[10] K.J. Gross, E.H. Majzoub, and S.W. Spangler, The effects of titanium precursors on hydriding properties of alanates, J. Alloys Comp. 356–357, 423–428 (2003),
http://dx.doi.org/10.1016/S0925-8388(03)00141-5
[11] K.J. Gross, S.E. Guthrie, S. Takara, and G.J. Thomas, In-situ X-ray diffraction study of the decomposition of NaAlH4, J. Alloys Comp. 297, 270–281 (2000),
http://dx.doi.org/10.1016/S0925-8388(99)00598-8
[12] D. Milcius, C. Templier, J.-P. Riviere, L.L. Pranevicius, and L. Pranevicius, High-flux, low-energy implantation effects on the composition of the altered layer, Surf. Coating Technol. 156(1–3), 214–218 (2002),
http://dx.doi.org/10.1016/S0257-8972(02)00090-7
[13] L. Pranevicius, C. Templier, J. Delafond, and S. Muzard, Simulation of interface effects during simultaneous deposition and ion irradiation, Surf. Coating Technol. 72, 51–61 (1995),
http://dx.doi.org/10.1016/0257-8972(94)02330-S
[14] L. Pranevicius, Coating Technology: Ion Beam Deposition (Satas & Associates, Warwick, 1993)
[15] P. Fielitz, G. Borcardt, M. Schmücker, H. Schneider, and P. Willich, Measurement of oxygen grain boundary diffusion in mullite ceramics by SIMS depth profiling, Appl. Surf. Sci. 9248, 1–5 (2002),
http://dx.doi.org/10.1016/S0169-4332(02)00641-4
[16] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, and R. Schulz, Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling, J. Alloys Comp. 297, 282–293 (2000),
http://dx.doi.org/10.1016/S0925-8388(99)00612-X