[PDF]    http://dx.doi.org/10.3952/lithjphys.44510

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 389–398 (2004)


DEPOSITION OF CARBON FILMS BY DIRECT ION BEAM
Š. Meškinisa, S. Tamulevičiusa,b, and V. Kopustinskasb
aInstitute of Physical Electronics, Kaunas University of Technology, Savanorių 271, LT-50131 Kaunas, Lithuania
bDepartment of Physics, Kaunas University of Technology, K. Donelaičio 73, LT-44029 Kaunas, Lithuania

Received 14 July 2004

Dedicated to the 100th anniversary of Professor K. Baršauskas

In this study diamond-like carbon (DLC) films have been grown onto the Si(111) and steel substrates by direct hydrocarbon (hexane, acetylene) ion beam deposition. Raman spectra of the room temperature deposited carbon films were typical of the hard tetrahedral amorphous carbon films. At 500 and 750 K temperatures, polymer-like carbon films have been synthesized. Hydrocarbon gas dilution by nitrogen resulted in growth of the more graphitic films. Increase of the deposition temperature resulted in increased internal stress in carbon films deposited from hexane–hydrogen gas mixture. Thin film stress decreased as a result of the hexane–hydrogen mixture dilution by nitrogen. Stress decreased with increase of the nitrogen concentration. It has been revealed that DLC films can be deposited by direct ion beam onto the AISI 316 steel at room temperature. Ion beam nitridation was the best method for increase of adhesion between the DLC and steel substrate.
Keywords: hydrogenated amorphous carbon films, clusters, direct ion beam deposition
PACS: 81.05.Uw, 81.15.Jj, 81.65.Cf, 61.46.+w, 68.55.–a


ANGLIES DANGŲ NUSODINIMAS JONŲ PLUOŠTELIU
Š. Meškinisa, S. Tamulevičiusa,b, V. Kopustinskasb
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bFizikinės elektronikos institutas, Kauno technologijos universitetas, Kaunas, Lietuva
bKauno technologijos universitetas, Kaunas, Lietuva

Deimanto tipo anglies dangos (DTAD) augintos ant Si(111) ir plieno padėklų tiesioginiu angliavandenilių (heksano, acetileno) jonų pluošteliu. Ramano sklaidos spektrai buvo panašūs i kietųjų tetraedrinių amorfinės anglies dangų spektrus. 500 ir 750 K temperatūroje susintezuotos polimeriškos anglies dangos. Auginimo metu angliavandenilių dujas skiedžiant azotu, užaugintos grafitiškesnės dangos. Kylant auginimo temperatūrai, plėvelėse stiprėjo vidiniai įtempiai. Angliavandenilių dujų skiedimas azotu taip pat silpnino vidinius įtempius. Paaiškėjo, kad deimanto tipo anglies dangos gali būti užaugintos kambario temperatūroje tiesioginiu jonų pluošteliu ant AISI 316 plieno. Veiksmingiausias DTAD sankibos su plienu sustiprinimo būdas buvo plieno paviršiaus jonpluoštis nitridavimas.


References / Nuorodos


[1] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37, 129–281 (2002),
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[2] T. Miyamura, O. Yoshida et al., Effect of surface treatments on adsorption and tribology of the diamond-like carbon layer for metal-evaporated tape, Jpn. J. Appl. Phys. 37, 6153–6156 (1998),
http://dx.doi.org/10.1143/JJAP.37.6153
[3] A.M. Baranov, Planarization of substrate surface by means of ultrathin diamond-like carbon film, Surf. Coat. Technol. 102, 154–158 (1998),
http://dx.doi.org/10.1016/S0257-8972(97)00629-4
[4] H. Shiomi, Reactive ion etching of diamond in O2 and CF4 plasma, Jpn. J. Appl. Phys. 36, 7745–7748 (1997),
http://dx.doi.org/10.1143/JJAP.36.7745
[5] O.S. Panwar, D. Sarangi, S. Kumar, P.N. Dixit, and R. Bhattacharyya, Diamond-like carbon films grown using a saddle field source, J. Vac. Sci. Technol. A 13, 2519–2524 (1995),
http://dx.doi.org/10.1116/1.579497
[6] X.T. Zhou, S.T. Lee, I. Bello, A.C. Cheung, D.S. Chiu, Y.W. Lam, C.S. Lee, K.M. Leung, and X.M. He, Physical properties of a-C:H films prepared by electron cyclotron resonance microwave plasma chemical vapor deposition, Mater. Sci. Eng. B 77, 229–234 (2000),
http://dx.doi.org/10.1016/S0921-5107(00)00487-6
[7] V. Kopustinskas, Š. Meškinis, V. Grigaliūnas, S. Tamulevičius, M. Pucėta, G. Niaura, and R. Tomašiūnas, Ion beam synthesis of a-CNx:H films, Surf. Coat. Technol. 151–152, 180–183 (2002),
http://dx.doi.org/10.1016/S0257-8972(01)01573-0
[8] R.L.C. Wu, W. Lanter, J. Wrbanek, and C. DeJoseph, Large-area surface treatment by ion beam technique, Surf. Coating Technol. 140, 35–43 (2001),
http://dx.doi.org/10.1016/S0257-8972(01)01001-5
[9] K. Yamamoto, K. Wazumi, T. Watanabe, Y. Koga, and S. Iijima, Tribological properties of diamond-like carbon films prepared by mass-separated ion beam deposition, Diamond Relat. Mater. 11, 1130–1134 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00581-7
[10] W.W. Scott, B. Bhushana, and A.V. Lakshmikumaran, Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads, J. Appl. Phys. 87, 6182–6184 (2000),
http://dx.doi.org/10.1063/1.372649
[11] H. Hofsass, C. Ronning, and H. Feldermann, Film growth using mass-separated ion beams, in: Application of Accelerators in Research and Industry – 16th International Conference, eds. J.L. Duggan and I.L. Morgan (American Institute of Physics, 2001) pp. 947–950,
http://dx.doi.org/10.1063/1.1395460
[12] V. Kopustinskas, S. Meskinis, S. Tamulevicius, G. Niaura, A. Guobiene, and V. Grigaliunas, Direct ion beam deposited carbon films and clusters, Vacuum 72, 193–198 (2003),
http://dx.doi.org/10.1016/S0042-207X(03)00145-3
[13] V. Kopustinskas, J. Margelevičius, Š. Meškinis, and V. Grigaliūnas, Diamond-like carbon films synthesis by ion beam, Materials Science (Medžiagotyra) 1, 33–36 (1998)
[14] S. Tamulevicius, V. Kopustinskas, S. Meskinis, and L. Augulis, Mechanical properties of ion beam deposited carbon films (in press, uncorrected proof at http://www.sciencedirect.com)
[15] S. Tamulevičius, L. Augulis, Š. Meškinis, and V. Grigaliūnas, Mechanical properties of carbon thin films, in: NATO Science Series Volume: Frontiers in Molecular-Scale Science and Technology of Nanocarbon, Nanosilicon and Biopolymer Integrated Nanosystems, eds. P. Scharff and E. Buzaneva (in press)
[16] H. Hofsass, C. Ronning, and H. Feldermann, Film growth using mass-separated ion beams, in: Application of Accelerators in Research and Industry – 16th International Conference, eds. J.L. Duggan and I.L. Morgan (American Institute of Physics, 2001) pp. 947–950,
http://dx.doi.org/10.1063/1.1395460
[17] B. Druz, I. Zaritskiy, J. Hoehn, V.I. Polyakov, A.I. Rukovishnikov, and V. Novotny, Direct ion beam deposition of hard 30 GPa diamond-like films from RF inductively coupled plasma source, Diamond Relat. Mater. 10, 931–936 (2001),
http://dx.doi.org/10.1016/S0925-9635(00)00547-1
[18] C. Lenardi, M.A. Baker, V. Briois, L. Nobili, P. Piseri, and W. Gissler, Properties of amorphous a-CH(:N) films synthesized by direct ion beam deposition and plasma-assisted chemical vapour deposition, Diamond Relat. Mater. 8, 595–600 (1999),
http://dx.doi.org/10.1016/S0925-9635(98)00284-2
[19] N. Maýtre, Th. Girardeau, S. Camelio, A. Barranco, D. Vouagner, and E. Breelle, Effects of negative low self-bias on hydrogenated amorphous carbon films deposited by PECVD technique, Diamond Relat. Mater. 12, 988–992 (2003),
http://dx.doi.org/10.1016/S0925-9635(02)00280-7
[20] D. Sheeja, B.K. Tay, K.W. Leong, and C.H. Lee, Effect of film thickness on the stress and adhesion of diamond-like carbon coatings, Diamond Relat. Mater. 11, 1643–1647 (2002),
http://dx.doi.org/10.1016/S0925-9635(02)00109-7
[21] A.C. Ferrari, S.E. Rodil, J. Robertson, and W.I. Milne, Is stress necessary to stabilise sp bonding in diamond-like carbon?, Diamond Relat. Mater. 11, 994–999 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00705-1
[22] O. Durand, R. Bisaro, C.J. Brierley, P. Galtier, G.R. Kennedy, J.K. Kruger, and J. Olivier, Residual stresses in chemical vapor deposition free-standing diamond films by X-ray diffraction analyses, Mater. Sci. Eng. A 228, 217–222 (2000),
http://dx.doi.org/10.1016/S0921-5093(00)00878-9
[23] N.G. Shang, C.S. Lee, Z.D. Lin, I. Bello, and S.T. Lee, Intrinsic stress evolution in diamond films prepared in a CH4H2NH3 hot filament chemical vapor deposition system, Diamond Relat. Mater. 9, 1388–1392 (2000),
http://dx.doi.org/10.1016/S0925-9635(00)00265-X
[24] N. Ali, Qi Hua Fan, J. Gracio, E. Pereira, and W. Ahmed, A comparison study of diamond adhesion on ductile metals, Thin Solid Films 377–378, 193–197 (2000),
http://dx.doi.org/10.1016/S0040-6090(00)01296-7
[25] D.J. Li, F.Z. Ui, and H.Q. Gu, Studies of diamond-like carbon films coated on PMMA by ion beam assisted deposition, Appl. Surf. Sci. 137, 30–37 (1999),
http://dx.doi.org/10.1016/S0169-4332(98)00485-1
[26] A. Fayer, O. Glozman, and A. Hoffman, Deposition of continuous and well adhering diamond steel, Appl. Phys. Lett. 67, 2299–2301 (1995),
http://dx.doi.org/10.1063/1.115132
[27] J.G. Buijnsters, P. Shankar, P. Gopalakrishnan, W.J.P. van Enckevort, J.J. Schermer, S.S. Ramakrishnan, and J.J. ter Meulen, Diffusion-modified boride interlayers for chemical vapour deposition of low-residual-stress diamond films on steel substrates, Thin Solid Films 426, 85–93 (2003),
http://dx.doi.org/10.1016/S0040-6090(03)00013-0
[28] F.J.G. Silva, A.P.M. Baptista, E. Pereira, V. Teixeira, Q.H. Fan, A.J.S. Fernandes, and F.M. Costa, Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers, Diamond Relat. Mater. 11, 1617–1622 (2002),
http://dx.doi.org/10.1016/S0925-9635(02)00029-8
[29] S. Tamulevičius, Stress and strain in the vacuum deposited thin films, Vacuum 51, 127–39 (1998),
http://dx.doi.org/10.1016/S0042-207X(98)00145-6
[30] S. Tamulevičius, L. Augulis, G. Laukaitis, and M. Žadvydas, Electronic speckle pattern interferometry for micromechanical measurements, Adv. Engrg. Mater. 4, 546–550 (2002),
http://dx.doi.org/10.1002/1527-2648(20020806)4:8<546::AID-ADEM546>3.0.CO;2-6
[31] D.H. Chen, A.X. Wei, S.P. Wong, J.B. Xu, M.M. Wu, and S.Q. Peng, Structural and optical properties of nitrogen-containing tetrahedral amorphous carbon films, Appl. Phys. A 70, 47–51 (2000),
http://dx.doi.org/10.1007/s003390050009
[32] V. Baranauskas, B.B. Li, A. Peterlevitz, M.C. Tosin, and S.F. Durrant, Nitrogen-doped diamond films, J. Appl. Phys. 85, 7455–7458 (1999),
http://dx.doi.org/10.1063/1.369378
[33] R. Prioli, S.I. Zanette, A.O. Caride, D.F. Fransceschini, and F.L. Freire, Atomic force microscopy of amorphous hydrogenated carbon-nitrogen films deposited by radio-frequency-plasma decomposition of methane-ammonia gas mixtures, J. Vac. Sci. Technol. A 14, 2351–2355 (1996),
http://dx.doi.org/10.1116/1.580021
[34] S.E. Rodil, N.A. Morrison, J. Robertson, and W.L. Milne, Nitrogen incorporation into tetrahedral hydrogenated amorphous carbon, Phys. Status Solidi A 174, 25–37 (1999),
http://dx.doi.org/10.1002/(SICI)1521-396X(199907)174:1<25::AID-PSSA25>3.0.CO;2-3
[35] A.K.M.S. Chowdhury, M. Monclus, D.C. Cameron, J. Gilvarry, M.J. Murphy, N.P. Barradas, and M.S.J. Hashmi, The composition and bonding structure of CNx films and their influence on the mechanical properties, Thin Solid Films 308–309, 130 (1997),
http://dx.doi.org/10.1016/S0040-6090(97)00381-7
[36] M. Schreck, T. Baur, R. Fehling, M. Müller, B. Stritzker, A. Bergmaier, and G. Dollinger, Modification of diamond film growth by a negative bias voltage in microwave plasma chemical vapor deposition, Diamond Relat. Mater. 7, 293–298 (1998),
http://dx.doi.org/10.1016/S0925-9635(97)00260-4
[37] M. Benlahsen, J. Henocque, K. Zellama, V. Branger, and F. Badawi, The effect of hydrogen evolution on the mechanical properties of hydrogenated amorphous carbon, Diamond Relat. Mater. 7, 769–773 (1998),
http://dx.doi.org/10.1016/S0925-9635(97)00300-2
[38] Qi Hua Fan, J. Gracio, Nasar Ali, and E. Pereira, Comparison of the adhesion of diamond films deposited on different materials, Diamond Relat. Mater. 10, 797–802 (2001),
http://dx.doi.org/10.1016/S0925-9635(00)00565-3
[39] M.I. De Barros and L. Vandenbulcke, Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature, Diamond Relat. Mater. 9, 1862–1866 (2000),
http://dx.doi.org/10.1016/S0925-9635(00)00335-6
[40] H.D. Klotz, R. Mach, F. Oleszak, H.E. Maneck, H. Goering, and K.W. Brzezinka, Synthesis and characterization of nanoscaled and nanostructured carbon containing materials produced by thermal plasma technology, Appl. Surf. Sci. 179, 1–7 (2001),
http://dx.doi.org/10.1016/S0169-4332(01)00253-7
[41] Q.H. Fan, A. Fernandes, and J. Gracio, Diamond coating on steel with a titanium interlayer, Diamond Relat. Mater. 7, 603–606 (1998),
http://dx.doi.org/10.1016/S0925-9635(97)00287-2
[42] K.Y. Li, Z.F. Zhou, C.Y. Chan, I. Bello, C.S. Lee, and S.T. Lee, Mechanical and tribological properties of diamond-like carbon films prepared on steel by ECRCVD process, Diamond Relat. Mater. 10, 1855–1861 (2001),
http://dx.doi.org/10.1016/S0925-9635(01)00459-9
[43] W. Zhaocu, Y. Yuehui, and L. Xianghuai, Characteristics of carbon nitride films synthesized by ion beam enhanced deposition system, Appl. Phys. Lett. 68, 1291–1293 (1996),
http://dx.doi.org/10.1063/1.115956
[44] J.S. Wang, Y. Sugimura, A.G. Evans, and W.K. Tredway, The mechanical performance of DLC films on steel substrates, Thin Solid Films 325, 163–174 (1998),
http://dx.doi.org/10.1016/S0040-6090(98)00418-0
[45] M.S. Wong, R. Meilumas, T.P. Ong, and R.P.H. Chang, Tribological properties of diamond films grown by plasma-enhanced chemical vapor deposition, Appl. Phys. Lett. 54, 2006–2008 (1989),
http://dx.doi.org/10.1063/1.101197
[46] Y. Jun, J.-Y. Choi, K.-R. Lee, B.-K. Jeong,S.-K. Kwon, and C.-H. Hwang, Application of diamond-like carbon films to spacer tools for electron guns of cathode ray tube CRT, Thin Solid Films 377–378, 233–238 (2000),
http://dx.doi.org/10.1016/S0040-6090(00)01430-9
[47] P.J. Wilbur and D.M. Weishaar, Effects of ion beam processing parameters on the adherence of DLC films, Diamond Relat. Mater. 8, 1648–1653 (1999),
http://dx.doi.org/10.1016/S0925-9635(99)00048-5
[48] F.E. Kennedy, D. Lidhagen, A. Erdemir, J.B. Woodford, and T. Kato, Tribological behavior of hard carbon coatings on steel substrates, Wear 255, 854–858 (2003),
http://dx.doi.org/10.1016/S0043-1648(03)00223-0
[49] N. Yamauchi, A. Okamoto, H. Tukahara, K. Demizu, N. Ueda, T. Sone, and Y. Hirose, Friction and wear of DLC films on 304 austenitic stainless steel in corrosive solutions, Surf. Coating Technol. 174–175, 465–469 (2003),
http://dx.doi.org/10.1016/S0257-8972(03)00406-7
[50] T.P. Ong and R.P.H. Chang, Properties of diamond composite films grown on iron surfaces, Appl. Phys. Lett. 58, 358–360 (1991),
http://dx.doi.org/10.1063/1.104633