[PDF]
http://dx.doi.org/10.3952/lithjphys.44510
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 389–398 (2004)
DEPOSITION OF CARBON FILMS BY
DIRECT ION BEAM
Š. Meškinisa, S. Tamulevičiusa,b, and V.
Kopustinskasb
aInstitute of Physical Electronics, Kaunas
University of Technology, Savanorių 271, LT-50131 Kaunas,
Lithuania
bDepartment of Physics, Kaunas University of
Technology, K. Donelaičio 73, LT-44029 Kaunas, Lithuania
Received 14 July 2004
Dedicated to the 100th anniversary of Professor K. Baršauskas
In this study diamond-like carbon (DLC) films
have been grown onto the Si(111) and steel substrates by direct
hydrocarbon (hexane, acetylene) ion beam deposition. Raman spectra
of the room temperature deposited carbon films were typical of the
hard tetrahedral amorphous carbon films. At 500 and 750 K
temperatures, polymer-like carbon films have been synthesized.
Hydrocarbon gas dilution by nitrogen resulted in growth of the
more graphitic films. Increase of the deposition temperature
resulted in increased internal stress in carbon films deposited
from hexane–hydrogen gas mixture. Thin film stress decreased as a
result of the hexane–hydrogen mixture dilution by nitrogen. Stress
decreased with increase of the nitrogen concentration. It has been
revealed that DLC films can be deposited by direct ion beam onto
the AISI 316 steel at room temperature. Ion beam nitridation was
the best method for increase of adhesion between the DLC and steel
substrate.
Keywords: hydrogenated amorphous carbon films, clusters,
direct ion beam deposition
PACS: 81.05.Uw, 81.15.Jj, 81.65.Cf, 61.46.+w, 68.55.–a
ANGLIES DANGŲ NUSODINIMAS JONŲ
PLUOŠTELIU
Š. Meškinisa, S. Tamulevičiusa,b, V.
Kopustinskasb
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bFizikinės elektronikos institutas, Kauno
technologijos universitetas, Kaunas, Lietuva
bKauno technologijos universitetas, Kaunas,
Lietuva
Deimanto tipo anglies dangos (DTAD) augintos
ant Si(111) ir plieno padėklų tiesioginiu angliavandenilių
(heksano, acetileno) jonų pluošteliu. Ramano sklaidos spektrai
buvo panašūs i kietųjų tetraedrinių amorfinės anglies dangų
spektrus. 500 ir 750 K temperatūroje susintezuotos polimeriškos
anglies dangos. Auginimo metu angliavandenilių dujas skiedžiant
azotu, užaugintos grafitiškesnės dangos. Kylant auginimo
temperatūrai, plėvelėse stiprėjo vidiniai įtempiai.
Angliavandenilių dujų skiedimas azotu taip pat silpnino vidinius
įtempius. Paaiškėjo, kad deimanto tipo anglies dangos gali būti
užaugintos kambario temperatūroje tiesioginiu jonų pluošteliu ant
AISI 316 plieno. Veiksmingiausias DTAD sankibos su plienu
sustiprinimo būdas buvo plieno paviršiaus jonpluoštis
nitridavimas.
References / Nuorodos
[1] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R
37, 129–281 (2002),
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[2] T. Miyamura, O. Yoshida et al., Effect of surface treatments on
adsorption and tribology of the diamond-like carbon layer for
metal-evaporated tape, Jpn. J. Appl. Phys. 37, 6153–6156
(1998),
http://dx.doi.org/10.1143/JJAP.37.6153
[3] A.M. Baranov, Planarization of substrate surface by means of
ultrathin diamond-like carbon film, Surf. Coat. Technol. 102,
154–158 (1998),
http://dx.doi.org/10.1016/S0257-8972(97)00629-4
[4] H. Shiomi, Reactive ion etching of diamond in O2 and
CF4 plasma, Jpn. J. Appl. Phys. 36, 7745–7748
(1997),
http://dx.doi.org/10.1143/JJAP.36.7745
[5] O.S. Panwar, D. Sarangi, S. Kumar, P.N. Dixit, and R.
Bhattacharyya, Diamond-like carbon films grown using a saddle field
source, J. Vac. Sci. Technol. A 13, 2519–2524 (1995),
http://dx.doi.org/10.1116/1.579497
[6] X.T. Zhou, S.T. Lee, I. Bello, A.C. Cheung, D.S. Chiu, Y.W. Lam,
C.S. Lee, K.M. Leung, and X.M. He, Physical properties of a-C:H
films prepared by electron cyclotron resonance microwave plasma
chemical vapor deposition, Mater. Sci. Eng. B 77, 229–234
(2000),
http://dx.doi.org/10.1016/S0921-5107(00)00487-6
[7] V. Kopustinskas, Š. Meškinis, V. Grigaliūnas, S. Tamulevičius,
M. Pucėta, G. Niaura, and R. Tomašiūnas, Ion beam synthesis of a-CNx:H
films, Surf. Coat. Technol. 151–152, 180–183 (2002),
http://dx.doi.org/10.1016/S0257-8972(01)01573-0
[8] R.L.C. Wu, W. Lanter, J. Wrbanek, and C. DeJoseph, Large-area
surface treatment by ion beam technique, Surf. Coating Technol. 140,
35–43 (2001),
http://dx.doi.org/10.1016/S0257-8972(01)01001-5
[9] K. Yamamoto, K. Wazumi, T. Watanabe, Y. Koga, and S. Iijima,
Tribological properties of diamond-like carbon films prepared by
mass-separated ion beam deposition, Diamond Relat. Mater. 11,
1130–1134 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00581-7
[10] W.W. Scott, B. Bhushana, and A.V. Lakshmikumaran, Ultrathin
diamond-like carbon coatings used for reduction of pole tip
recession in magnetic tape heads, J. Appl. Phys. 87,
6182–6184 (2000),
http://dx.doi.org/10.1063/1.372649
[11] H. Hofsass, C. Ronning, and H. Feldermann, Film growth using
mass-separated ion beams, in: Application of Accelerators in
Research and Industry – 16th International Conference, eds.
J.L. Duggan and I.L. Morgan (American Institute of Physics, 2001)
pp. 947–950,
http://dx.doi.org/10.1063/1.1395460
[12] V. Kopustinskas, S. Meskinis, S. Tamulevicius, G. Niaura, A.
Guobiene, and V. Grigaliunas, Direct ion beam deposited carbon films
and clusters, Vacuum 72, 193–198 (2003),
http://dx.doi.org/10.1016/S0042-207X(03)00145-3
[13] V. Kopustinskas, J. Margelevičius, Š. Meškinis, and V.
Grigaliūnas, Diamond-like carbon films synthesis by ion beam,
Materials Science (Medžiagotyra) 1, 33–36 (1998)
[14] S. Tamulevicius, V. Kopustinskas, S. Meskinis, and L. Augulis,
Mechanical properties of ion beam deposited carbon films (in press,
uncorrected proof at http://www.sciencedirect.com)
[15] S. Tamulevičius, L. Augulis, Š. Meškinis, and V. Grigaliūnas,
Mechanical properties of carbon thin films, in: NATO Science
Series Volume: Frontiers in Molecular-Scale Science and Technology
of Nanocarbon, Nanosilicon and Biopolymer Integrated Nanosystems,
eds. P. Scharff and E. Buzaneva (in press)
[16] H. Hofsass, C. Ronning, and H. Feldermann, Film growth using
mass-separated ion beams, in: Application of Accelerators in
Research and Industry – 16th International Conference, eds.
J.L. Duggan and I.L. Morgan (American Institute of Physics, 2001)
pp. 947–950,
http://dx.doi.org/10.1063/1.1395460
[17] B. Druz, I. Zaritskiy, J. Hoehn, V.I. Polyakov, A.I.
Rukovishnikov, and V. Novotny, Direct ion beam deposition of hard 30
GPa diamond-like films from RF inductively coupled plasma source,
Diamond Relat. Mater. 10, 931–936 (2001),
http://dx.doi.org/10.1016/S0925-9635(00)00547-1
[18] C. Lenardi, M.A. Baker, V. Briois, L. Nobili, P. Piseri, and W.
Gissler, Properties of amorphous a-CH(:N) films synthesized by
direct ion beam deposition and plasma-assisted chemical vapour
deposition, Diamond Relat. Mater. 8, 595–600 (1999),
http://dx.doi.org/10.1016/S0925-9635(98)00284-2
[19] N. Maýtre, Th. Girardeau, S. Camelio, A. Barranco, D. Vouagner,
and E. Breelle, Effects of negative low self-bias on hydrogenated
amorphous carbon films deposited by PECVD technique, Diamond Relat.
Mater. 12, 988–992 (2003),
http://dx.doi.org/10.1016/S0925-9635(02)00280-7
[20] D. Sheeja, B.K. Tay, K.W. Leong, and C.H. Lee, Effect of film
thickness on the stress and adhesion of diamond-like carbon
coatings, Diamond Relat. Mater. 11, 1643–1647 (2002),
http://dx.doi.org/10.1016/S0925-9635(02)00109-7
[21] A.C. Ferrari, S.E. Rodil, J. Robertson, and W.I. Milne, Is
stress necessary to stabilise sp bonding in diamond-like carbon?,
Diamond Relat. Mater. 11, 994–999 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00705-1
[22] O. Durand, R. Bisaro, C.J. Brierley, P. Galtier, G.R. Kennedy,
J.K. Kruger, and J. Olivier, Residual stresses in chemical vapor
deposition free-standing diamond films by X-ray diffraction
analyses, Mater. Sci. Eng. A 228, 217–222 (2000),
http://dx.doi.org/10.1016/S0921-5093(00)00878-9
[23] N.G. Shang, C.S. Lee, Z.D. Lin, I. Bello, and S.T. Lee,
Intrinsic stress evolution in diamond films prepared in a CH4H2NH3
hot filament chemical vapor deposition system, Diamond Relat. Mater.
9, 1388–1392 (2000),
http://dx.doi.org/10.1016/S0925-9635(00)00265-X
[24] N. Ali, Qi Hua Fan, J. Gracio, E. Pereira, and W. Ahmed, A
comparison study of diamond adhesion on ductile metals, Thin Solid
Films 377–378, 193–197 (2000),
http://dx.doi.org/10.1016/S0040-6090(00)01296-7
[25] D.J. Li, F.Z. Ui, and H.Q. Gu, Studies of diamond-like carbon
films coated on PMMA by ion beam assisted deposition, Appl. Surf.
Sci. 137, 30–37 (1999),
http://dx.doi.org/10.1016/S0169-4332(98)00485-1
[26] A. Fayer, O. Glozman, and A. Hoffman, Deposition of continuous
and well adhering diamond steel, Appl. Phys. Lett. 67,
2299–2301 (1995),
http://dx.doi.org/10.1063/1.115132
[27] J.G. Buijnsters, P. Shankar, P. Gopalakrishnan, W.J.P. van
Enckevort, J.J. Schermer, S.S. Ramakrishnan, and J.J. ter Meulen,
Diffusion-modified boride interlayers for chemical vapour deposition
of low-residual-stress diamond films on steel substrates, Thin Solid
Films 426, 85–93 (2003),
http://dx.doi.org/10.1016/S0040-6090(03)00013-0
[28] F.J.G. Silva, A.P.M. Baptista, E. Pereira, V. Teixeira, Q.H.
Fan, A.J.S. Fernandes, and F.M. Costa, Microwave plasma chemical
vapour deposition diamond nucleation on ferrous substrates with Ti
and Cr interlayers, Diamond Relat. Mater. 11, 1617–1622
(2002),
http://dx.doi.org/10.1016/S0925-9635(02)00029-8
[29] S. Tamulevičius, Stress and strain in the vacuum deposited thin
films, Vacuum 51, 127–39 (1998),
http://dx.doi.org/10.1016/S0042-207X(98)00145-6
[30] S. Tamulevičius, L. Augulis, G. Laukaitis, and M. Žadvydas,
Electronic speckle pattern interferometry for micromechanical
measurements, Adv. Engrg. Mater. 4, 546–550 (2002),
http://dx.doi.org/10.1002/1527-2648(20020806)4:8<546::AID-ADEM546>3.0.CO;2-6
[31] D.H. Chen, A.X. Wei, S.P. Wong, J.B. Xu, M.M. Wu, and S.Q.
Peng, Structural and optical properties of nitrogen-containing
tetrahedral amorphous carbon films, Appl. Phys. A 70, 47–51
(2000),
http://dx.doi.org/10.1007/s003390050009
[32] V. Baranauskas, B.B. Li, A. Peterlevitz, M.C. Tosin, and S.F.
Durrant, Nitrogen-doped diamond films, J. Appl. Phys. 85,
7455–7458 (1999),
http://dx.doi.org/10.1063/1.369378
[33] R. Prioli, S.I. Zanette, A.O. Caride, D.F. Fransceschini, and
F.L. Freire, Atomic force microscopy of amorphous hydrogenated
carbon-nitrogen films deposited by radio-frequency-plasma
decomposition of methane-ammonia gas mixtures, J. Vac. Sci. Technol.
A 14, 2351–2355 (1996),
http://dx.doi.org/10.1116/1.580021
[34] S.E. Rodil, N.A. Morrison, J. Robertson, and W.L. Milne,
Nitrogen incorporation into tetrahedral hydrogenated amorphous
carbon, Phys. Status Solidi A 174, 25–37 (1999),
http://dx.doi.org/10.1002/(SICI)1521-396X(199907)174:1<25::AID-PSSA25>3.0.CO;2-3
[35] A.K.M.S. Chowdhury, M. Monclus, D.C. Cameron, J. Gilvarry, M.J.
Murphy, N.P. Barradas, and M.S.J. Hashmi, The composition and
bonding structure of CNx films and their influence
on the mechanical properties, Thin Solid Films 308–309, 130
(1997),
http://dx.doi.org/10.1016/S0040-6090(97)00381-7
[36] M. Schreck, T. Baur, R. Fehling, M. Müller, B. Stritzker, A.
Bergmaier, and G. Dollinger, Modification of diamond film growth by
a negative bias voltage in microwave plasma chemical vapor
deposition, Diamond Relat. Mater. 7, 293–298 (1998),
http://dx.doi.org/10.1016/S0925-9635(97)00260-4
[37] M. Benlahsen, J. Henocque, K. Zellama, V. Branger, and F.
Badawi, The effect of hydrogen evolution on the mechanical
properties of hydrogenated amorphous carbon, Diamond Relat. Mater. 7,
769–773 (1998),
http://dx.doi.org/10.1016/S0925-9635(97)00300-2
[38] Qi Hua Fan, J. Gracio, Nasar Ali, and E. Pereira, Comparison of
the adhesion of diamond films deposited on different materials,
Diamond Relat. Mater. 10, 797–802 (2001),
http://dx.doi.org/10.1016/S0925-9635(00)00565-3
[39] M.I. De Barros and L. Vandenbulcke, Plasma-assisted chemical
vapor deposition process for depositing smooth diamond coatings on
titanium alloys at moderate temperature, Diamond Relat. Mater. 9,
1862–1866 (2000),
http://dx.doi.org/10.1016/S0925-9635(00)00335-6
[40] H.D. Klotz, R. Mach, F. Oleszak, H.E. Maneck, H. Goering, and
K.W. Brzezinka, Synthesis and characterization of nanoscaled and
nanostructured carbon containing materials produced by thermal
plasma technology, Appl. Surf. Sci. 179, 1–7 (2001),
http://dx.doi.org/10.1016/S0169-4332(01)00253-7
[41] Q.H. Fan, A. Fernandes, and J. Gracio, Diamond coating on steel
with a titanium interlayer, Diamond Relat. Mater. 7, 603–606
(1998),
http://dx.doi.org/10.1016/S0925-9635(97)00287-2
[42] K.Y. Li, Z.F. Zhou, C.Y. Chan, I. Bello, C.S. Lee, and S.T.
Lee, Mechanical and tribological properties of diamond-like carbon
films prepared on steel by ECRCVD process, Diamond Relat. Mater. 10,
1855–1861 (2001),
http://dx.doi.org/10.1016/S0925-9635(01)00459-9
[43] W. Zhaocu, Y. Yuehui, and L. Xianghuai, Characteristics of
carbon nitride films synthesized by ion beam enhanced deposition
system, Appl. Phys. Lett. 68, 1291–1293 (1996),
http://dx.doi.org/10.1063/1.115956
[44] J.S. Wang, Y. Sugimura, A.G. Evans, and W.K. Tredway, The
mechanical performance of DLC films on steel substrates, Thin Solid
Films 325, 163–174 (1998),
http://dx.doi.org/10.1016/S0040-6090(98)00418-0
[45] M.S. Wong, R. Meilumas, T.P. Ong, and R.P.H. Chang,
Tribological properties of diamond films grown by plasma-enhanced
chemical vapor deposition, Appl. Phys. Lett. 54, 2006–2008
(1989),
http://dx.doi.org/10.1063/1.101197
[46] Y. Jun, J.-Y. Choi, K.-R. Lee, B.-K. Jeong,S.-K. Kwon, and
C.-H. Hwang, Application of diamond-like carbon films to spacer
tools for electron guns of cathode ray tube CRT, Thin Solid Films 377–378,
233–238 (2000),
http://dx.doi.org/10.1016/S0040-6090(00)01430-9
[47] P.J. Wilbur and D.M. Weishaar, Effects of ion beam processing
parameters on the adherence of DLC films, Diamond Relat. Mater. 8,
1648–1653 (1999),
http://dx.doi.org/10.1016/S0925-9635(99)00048-5
[48] F.E. Kennedy, D. Lidhagen, A. Erdemir, J.B. Woodford, and T.
Kato, Tribological behavior of hard carbon coatings on steel
substrates, Wear 255, 854–858 (2003),
http://dx.doi.org/10.1016/S0043-1648(03)00223-0
[49] N. Yamauchi, A. Okamoto, H. Tukahara, K. Demizu, N. Ueda, T.
Sone, and Y. Hirose, Friction and wear of DLC films on 304
austenitic stainless steel in corrosive solutions, Surf. Coating
Technol. 174–175, 465–469 (2003),
http://dx.doi.org/10.1016/S0257-8972(03)00406-7
[50] T.P. Ong and R.P.H. Chang, Properties of diamond composite
films grown on iron surfaces, Appl. Phys. Lett. 58, 358–360
(1991),
http://dx.doi.org/10.1063/1.104633