[PDF]
http://dx.doi.org/10.3952/lithjphys.44511
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 399–402 (2004)
GROWING OF SbOxS1−xI
CRYSTALS AND INVESTIGATION OF VIBRATIONAL SPECTRA IN THE PHASE
TRANSITION REGION
A. Audzijonis, L. Žigas, R. Žaltauskas, and A. Pauliukas
Department of Physics, Vilnius Pedagogical University, Studentų
39, LT-08106 Vilnius, Lithuania
E-mail: kkol@vpu.lt
Received 01 June 2004
Dedicated to the 100th anniversary of Professor K. Baršauskas
SbOxS1−xI (x
= 0−0.5) crystals have been grown from the vapour phase.
Reflection spectra of the SbOxS1−xI
(x = 0.2) crystals were studied by a modernized Fourier
spectrometer at E∥c. Using an improved
Kramers–Kronig technique with two confining spectral limits, the
spectra of optical constants and optical functions were
calculated. The vibrational frequencies ωL and
ωT have been evaluated. The vibrational
frequencies of SbOxS1−xI (x
= 0.2) chains in different phases have been calculated in the
harmonic approximation. The theoretical results are compared with
experimental data.
Keywords: SbOxS1−xI,
growing crystals, vibrational spectra, Kramers–Kronig technique
PACS: 81.10.–h, 81.10.Bk, 63.20.Dj, 77.80.Bh
SbOxS1−xI
KRISTALŲ AUGINIMAS IR VIBRACINIŲ SPEKTRŲ TYRIMAS FAZINIŲ VIRSMŲ
SRITYJE
A. Audzijonis, L. Žigas, R. Žaltauskas, A. Pauliukas
Vilniaus pedagoginis universitetas, Vilnius, Lietuva
SbOxS1−xI (x
= 0−0,5) kristalai išauginti iš garų fazės. Šių kristalų
atspindžio spektrai ištirti Fourier spektrometru, kai E∥c.
Optinės konstantos, optinės funkcijos ir vibraciniai dažniai (ωT
ir ωL) apskaičiuoti Kramers’o ir Kronig’o
metodu. SbOxS1−xI (x =
0,2) grandinėlės vibraciniai dažniai apskaičiuoti harmoniniame
artėjime. Teoriniai rezultatai palyginti su eksperimentiniais.
References / Nuorodos
[1] J. Grigas, E. Talik, and V. Lazauskas, Splitting of the XPS in
ferroelectric SbSI crystals, Ferroelectrics 284, 147–160
(2003),
http://dx.soi.org/10.1080/00150190390204790
[2] B. Garbarz-Gloss, Dielectric properties of SbSI-modifed in phase
transition region, Ferroelectrics 292, 137–143 (2003),
http://dx.soi.org/10.1080/00150190390222925
[3] J. Grigas, A. Kajokas, A. Audzijonis, and L. Žigas,
Peculiarities and properties of SbSI electroceramics, J. Eur.
Ceramic Soc. 21, 1337–1340 (2001),
http://dx.soi.org/10.1016/S0955-2219(01)00013-9
[4] A. Audzijonis, L. Žigas, R. Žaltauskas, J. Narušis, and L.
Audzijonienė, Electronic potentials of normal vibrational modes in
SbSI crystals, Ferroelectrics 274, 1–15 (2002),
http://dx.soi.org/10.1080/00150190213964
[5] Y. Porat, The ferroelectric and piezoelectric properties of SbS1−xOxI,
Ferroelectrics 51, 213–237 (1984),
http://dx.soi.org/10.1080/00150198408232556
[6] R.L. Palaniappan, M. Shanmugham, F.D. Gnanam, and P. Ramasamy,
Growth and electrical characterization of SbSI and SbSOI crystals,
J. Cryst. Growth 97, 519–521 (1986),
http://dx.soi.org/10.1016/0022-0248(86)90486-0
[7] V. Kalesinskas, J. Grigas, A. Audzijonis, and K. Žičkus,
Microwave resonance dielectric dispersion in SbS0.7Se0.3I
crystals, Phase Transitions 3, 217–226 (1983),
http://dx.soi.org/10.1080/01411598308243021
[8] V. Kalesinskas, J. Grigas, R. Jankevičius, and A. Audzijonis,
Soft mode in the microwave dielectric spectra of the SbSI–BiSI
system, Phys. Status Solidi B 115, K11–K13 (1983),
http://dx.soi.org/10.1002/pssb.2221150142
[9] E. Furman, O. Brafman, and J. Makovsky, Approximation to
long-wavelength dynamics of SbSI-type crystals, Phys. Rev. B 13(4),
1703–1710 (1976),
http://dx.soi.org/10.1103/PhysRevB.13.1703
[10] S. Kvedaravičius, A. Audzijonis, N. Mykolaitienė, and J.
Grigas, Soft mode and its electronic potential in SbSI-type mixed
crystals, Ferroelectrics 177, 181–190 (1996),
http://dx.soi.org/10.1080/00150199608223627
[11] M.W. Smidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S.
Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.I. Su,
T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic and
molecular electronic structure system, J. Comput. Chem. 14,
1347 (1993),
http://dx.soi.org/10.1002/jcc.540141112