[PDF]
http://dx.doi.org/10.3952/lithjphys.44512
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 403–408 (2004)
AMORPHIZATION AND STRESS IN
ION-IMPLANTED CRYSTALLINE SOLIDS
D. Girdauskienėa and I. Požėlab
aDepartment of Physics, Lithuanian University of
Agriculture, Universiteto 10, LT-4324 Kaunas, Lithuania
E-mail: daliag@info.lzua.lt
bDepartment of Physics, Kaunas University of
Technology, Studentų 50, LT-51424 Kaunas, Lithuania
Received 14 October 2003
Dedicated to the 100th anniversary of Professor K. Baršauskas
The model of amorphization of crystals induced
by ion irradiation is considered. The model describes two stages
of the amorphization, the generation of primary defects by
collision cascades and the collapse of crystalline regions, which
begins when the concentration of the primary defects reaches about
10%. Due to the colapse of crystalline regions, the total defect
concentration increases up to about 80% for rather small increment
of the fluence Φ. The defect concentration and the integral stress
were calculated theoretically for the silicon samples subjected to
irradiation with light, average, and heavy mass ions. The integral
stress was analysed as the sum S = Sd +
Sion, where the Sd and Sion
terms correspond to the stresses due to point defects and
implanted ions, respectively. At low fluences, Φ < Φa
(where Φa is the characteristic amorphization fluence),
the term Sd linearly depends on the fluence and
essentially exceeds the stress due to implanted ions. The integral
stress acquires a maximum value at Φ = Φa. At higher
fluences, Φ > Φa, the term Sd
considerably decreases and the Sion term
dominates the integral stress. In this Φ region, the stress
saturates to the constant value, which is larger for the lighter
ions and smaller for the heavier ones.
Keywords: ion irradiation, defects, amorphization, integral
stress, relaxation
PACS: 61.80.Jh, 62.40.+i
AMORFINIMASIS IR ĮTEMPIAI JONAIS
ŠVITINAMUOSE KRISTALUOSE
D. Girdauskienėa, I. Požėlab
aLietuvos žemės ūkio universitetas, Kaunas, Lietuva
bKauno technologijos universitetas, Kaunas,
Lietuva
Pateiktas modelis, aprašantis joninio švitinimo
sukeltą kristalinio bandinio amorfizaciją ir paskaičiuoti jos
sukelti radiaciniai įtempiai. Modelis atitinka du gardelės
amorfinimosi etapus: pirminių defektų (tarpmazgių, vakansijų,
Frenkelio porų) kūrimą jonų arba atatrankos atomų dūžių santalkose
ir kristalinių sričių gniuždymą (kolapsavimą). Gardelės gniuždymas
pradeda reikštis, kai pirminių defektų koncentracija pasiekia
≈10%. Dėl to vyksmo siaurame apšvitų ruože defektų koncentracija
padidėja iki ≈80%. Apskaičiuota koncentracija defektų, sukurtų
švitinant silicį sunkiais (Xe), vidutinės masės (Ar, Ne) ir
lengvais (He) jonais. Darbe taip pat analizuojami tų jonų silicyje
sukurti integriniai įtempiai. Sukurti įtempiai yra gniuždantys ir
lygūs S = Sd + Sion.
Įtempių sandas Sd sukurtas radiacinių taškinių
defektų, Sion – įterptų jonų. Esant mažoms
apšvitoms, Φ < Φa (čia Φ < Φa –
amorfinimosi apšvita), Sd sandas tiesiškai
priklauso nuo apšvitos, o Sion ≪ Sd.
Sd yra didžiausias, jei Φ = Φa, o Sion
sandas vis dar nežymus. Toliau švitinant, Φ > Φa,
dydis Sd relaksuoja į nulį, o dydis Sion
įsisotina. Sion sandas didesnis lengvesniems
jonams, mažesnis – sunkesniems.
References / Nuorodos
[1] E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.I. Current,
T. Diaz de la Rubia, D.J. Eaglesham, O.W. Holland, M.E. Law, C.W.
Magel, J.W. Mayer, J. Meingailis, and A.F. Tasch, Ion beams in
silicon processing and characterization, J. Appl. Phys. 81(10),
6513–6561 (1997),
http://dx.doi.org/10.1063/1.365193
[2] G. Carter, The effects of flux, fluence and temperature on
amorphization in ion implanted semiconductors, J. Appl. Phys. 79(11),
8285–8289 (1996),
http://dx.doi.org/10.1063/1.362468
[3] G. Bai and M.-A. Nicolet, Defect production in Si(100) by F, Si,
Ar and Xe implantation at room temperature, J. Appl. Phys. 70(7),
3521–3555 (1991),
http://dx.doi.org/10.1063/1.349251
[4] T. Henkel, V. Heera, R. Kögler, and W. Skorupe, Kinetics of
ion-beam-induced interfacial amorphization in silicon, J. Appl.
Phys. 82(11), 5360–5373 (1977),
http://dx.doi.org/10.1063/1.366458
[5] A. Battaglia and S.U. Campisano, Mechanisms of amorphization of
crystalline silicon, J. Appl. Phys. 74(10), 6058–6061
(1993),
http://dx.doi.org/10.1063/1.355222
[6] Yu. Suprun-Belevich, F. Cristiano, A. Nejim, P.L.F. Hemment, and
B.J. Sealy, Mechanical strain and defects in the end-of-range region
in silicon implanted with C+ ions, Semicond. Sci. Techol.
13, 220–225 (1998),
http://dx.doi.org/10.1088/0268-1242/13/2/011
[7] V.V. Bolotov, M.D. Efremov, and V.A. Volodin, Mechanical stress
relaxation in ion-implanted SOS structures, Thin Solid Films 248,
212–219 (1994),
http://dx.doi.org/10.1016/0040-6090(94)90013-2
[8] C.A. Volkert, Stress and plastic flow in silicon during
amorphization by ion bombardment, J. Appl. Phys. 70(7),
3521–3527 (1994),
http://dx.doi.org/10.1063/1.349247
[9] L. Pranevičius, S. Tamulevičius, L. Puodžiukynas, and A.
Matiukas, Application of laser interferometer systems for the study
of ion interaction with solid, Phys. Status Solidi 96,
K157–K161 (1986),
http://dx.doi.org/10.1002/pssa.2210960252
[10] K.F. Badawi, P.H. Coudeau, J. Pacaud, C. Jaouen, J. Delafand,
A. Naudou, and G. Gladyszewski, X-ray diffraction study of residual
stress modification in Cu/W superlattices irradiated by light and
heavy ions, Nucl. Instrum. Methods Phys. Res. B 80/81,
404–407 (1993),
http://dx.doi.org/10.1016/0168-583X(93)96149-7
[11] Z.E. Horvath, G. Peto, E. Zsoldos, and J. Gyalai, Strain in As+
and Sb+ implanted and annealed ⟨100⟩ Si, Nucl. Instrum.
Methods Phys. Res. B 80/81, 552–555 (1993),
http://dx.doi.org/10.1016/0168-583X(93)96179-G
[12] B.B. Sharma, S.R. Gupta, V. Kumar, U. Tiwari, P. Sen, and G.K.
Mehta, XRT mapping of strain induced by 200 MeV Ag14+
ions in Si(001), Mater. Chem. Phys. 54, 293–295 (1998),
http://dx.doi.org/10.1016/S0254-0584(98)00074-1
[13] J. Dennis and E.B. Hale, Crystalline to amorphous
transformation in ion-implanted silicon: A composite model, J. Appl.
Phys. 49(3), 1119–1127 (1978),
http://dx.doi.org/10.1063/1.325049
[14] H. Trinkaus, Ion beam induced amorphisation of crystalline
solids: Mechanisms and modelling, Mater. Sci. Forum 248,
3–12 (1997),
http://dx.doi.org/10.4028/www.scientific.net/MSF.248-249.3
[15] G. Bai and M.-A. Nicolet, Defects production and annealing in
self-implanted Si, J. Appl. Phys. 70(2), 649–655 (1991),
http://dx.doi.org/10.1063/1.349668
[16] H. Trinkaus and A.I. Ryazanov, Viscoelastic model for the
plastic flow of amorphous solids under energetic ion bombardment,
Phys. Rev. Lett. 74(25), 5072–5075 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.5072
[17] S.G. Mayr, Y. Ashkenazy, and R.S. Averback, Evolution of
thin-film morphologies during ion beam bombardment, Nucl. Instrum.
Methods Phys. Res. B 212, 246–252 (2003),
http://dx.doi.org/10.1016/S0168-583X(03)01421-6
[18] S. Tamulevičius and I. Požėla, Stress and strain in the ion
implanted crystalline silicon, Materials Science (Medžiagotyra) 2(5),
32–34 (1997)
[19] S. Tamulevičius and I. Požėla, Dynamics of the integral stress
and strain in the ion implanted silicon, in: Proc. of
International Conference on Plasma Physics and Plasma Technology
(PPPT-2) (Minsk, 1997)
[20] S. Tamulevičius, I. Požėla, and J. Jankauskas, Integral stress
in ion-implanted silicon, J. Phys. D 31(7), 2991–2996
(1998),
http://dx.doi.org/10.1088/0022-3727/31/21/002
[21] D. Girdauskienė and I. Požėla, Elastic stress in ion-implanted
crystals of silicon, Lithuanian J. Phys. 39(1), 69–73 (1999)
[22] M. Bartenev and D. Sanditov, Relaxation Processes in
Glass-like Systems (Nauka, Novosibirsk, 1986) [in Russian]
[23] L. Pranevičius and J. Dudonis, Ion Beam Modification of
Solids (Mokslas, Vilnius, 1980)
[24] L.I. Fedina, On the recombination and the interaction of
intrinsic point defects with the surface during point defect
clustering in Si crystal, Fiz. Tekh. Poluprovodn. 35(9),
1120–1126 (2001),
http://dx.doi.org/10.1134/1.1403572
[25] K.G. McQuhae and A.S. Brown, The lattice contraction
coefficient of boron and phosphorus in silicon, Solid State
Electron. 15, 259–264 (1972),
http://dx.doi.org/10.1016/0038-1101(72)90079-2
[26] T. Erdey-Gruz, Grundlagen der Struktur der Materie
(Mir, Moscow, 1976)
[27] E.P. Eer Nisse, Sensitive technique for studying
ion-implantation damage, Appl. Phys. Lett. 18(12), 581–583
(1971),
http://dx.doi.org/10.1063/1.1653549
[28] J.P. Biersack and L.G. Haggmark, A Monte Carlo computer program
for the transport of energetic ions in amorphous targets, Nucl.
Instrum. Methods Phys. Res. 174, 257–269 (1980),
http://dx.doi.org/10.1016/0029-554X(80)90440-1