[PDF]    http://dx.doi.org/10.3952/lithjphys.44512

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 403–408 (2004)


AMORPHIZATION AND STRESS IN ION-IMPLANTED CRYSTALLINE SOLIDS
D. Girdauskienėa and I. Požėlab
aDepartment of Physics, Lithuanian University of Agriculture, Universiteto 10, LT-4324 Kaunas, Lithuania
E-mail: daliag@info.lzua.lt
bDepartment of Physics, Kaunas University of Technology, Studentų 50, LT-51424 Kaunas, Lithuania

Received 14 October 2003

Dedicated to the 100th anniversary of Professor K. Baršauskas

The model of amorphization of crystals induced by ion irradiation is considered. The model describes two stages of the amorphization, the generation of primary defects by collision cascades and the collapse of crystalline regions, which begins when the concentration of the primary defects reaches about 10%. Due to the colapse of crystalline regions, the total defect concentration increases up to about 80% for rather small increment of the fluence Φ. The defect concentration and the integral stress were calculated theoretically for the silicon samples subjected to irradiation with light, average, and heavy mass ions. The integral stress was analysed as the sum S = Sd + Sion, where the Sd and Sion terms correspond to the stresses due to point defects and implanted ions, respectively. At low fluences, Φ < Φa (where Φa is the characteristic amorphization fluence), the term Sd linearly depends on the fluence and essentially exceeds the stress due to implanted ions. The integral stress acquires a maximum value at Φ = Φa. At higher fluences, Φ > Φa, the term Sd considerably decreases and the Sion term dominates the integral stress. In this Φ region, the stress saturates to the constant value, which is larger for the lighter ions and smaller for the heavier ones.
Keywords: ion irradiation, defects, amorphization, integral stress, relaxation
PACS: 61.80.Jh, 62.40.+i


AMORFINIMASIS IR ĮTEMPIAI JONAIS ŠVITINAMUOSE KRISTALUOSE
D. Girdauskienėa, I. Požėlab
aLietuvos žemės ūkio universitetas, Kaunas, Lietuva
bKauno technologijos universitetas, Kaunas, Lietuva

Pateiktas modelis, aprašantis joninio švitinimo sukeltą kristalinio bandinio amorfizaciją ir paskaičiuoti jos sukelti radiaciniai įtempiai. Modelis atitinka du gardelės amorfinimosi etapus: pirminių defektų (tarpmazgių, vakansijų, Frenkelio porų) kūrimą jonų arba atatrankos atomų dūžių santalkose ir kristalinių sričių gniuždymą (kolapsavimą). Gardelės gniuždymas pradeda reikštis, kai pirminių defektų koncentracija pasiekia ≈10%. Dėl to vyksmo siaurame apšvitų ruože defektų koncentracija padidėja iki ≈80%. Apskaičiuota koncentracija defektų, sukurtų švitinant silicį sunkiais (Xe), vidutinės masės (Ar, Ne) ir lengvais (He) jonais. Darbe taip pat analizuojami tų jonų silicyje sukurti integriniai įtempiai. Sukurti įtempiai yra gniuždantys ir lygūs S = Sd + Sion. Įtempių sandas Sd sukurtas radiacinių taškinių defektų, Sion – įterptų jonų. Esant mažoms apšvitoms, Φ < Φa (čia Φ < Φa – amorfinimosi apšvita), Sd sandas tiesiškai priklauso nuo apšvitos, o SionSd. Sd yra didžiausias, jei Φ = Φa, o Sion sandas vis dar nežymus. Toliau švitinant, Φ > Φa, dydis Sd relaksuoja į nulį, o dydis Sion įsisotina. Sion sandas didesnis lengvesniems jonams, mažesnis – sunkesniems.


References / Nuorodos


[1] E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.I. Current, T. Diaz de la Rubia, D.J. Eaglesham, O.W. Holland, M.E. Law, C.W. Magel, J.W. Mayer, J. Meingailis, and A.F. Tasch, Ion beams in silicon processing and characterization, J. Appl. Phys. 81(10), 6513–6561 (1997),
http://dx.doi.org/10.1063/1.365193
[2] G. Carter, The effects of flux, fluence and temperature on amorphization in ion implanted semiconductors, J. Appl. Phys. 79(11), 8285–8289 (1996),
http://dx.doi.org/10.1063/1.362468
[3] G. Bai and M.-A. Nicolet, Defect production in Si(100) by F, Si, Ar and Xe implantation at room temperature, J. Appl. Phys. 70(7), 3521–3555 (1991),
http://dx.doi.org/10.1063/1.349251
[4] T. Henkel, V. Heera, R. Kögler, and W. Skorupe, Kinetics of ion-beam-induced interfacial amorphization in silicon, J. Appl. Phys. 82(11), 5360–5373 (1977),
http://dx.doi.org/10.1063/1.366458
[5] A. Battaglia and S.U. Campisano, Mechanisms of amorphization of crystalline silicon, J. Appl. Phys. 74(10), 6058–6061 (1993),
http://dx.doi.org/10.1063/1.355222
[6] Yu. Suprun-Belevich, F. Cristiano, A. Nejim, P.L.F. Hemment, and B.J. Sealy, Mechanical strain and defects in the end-of-range region in silicon implanted with C+ ions, Semicond. Sci. Techol. 13, 220–225 (1998),
http://dx.doi.org/10.1088/0268-1242/13/2/011
[7] V.V. Bolotov, M.D. Efremov, and V.A. Volodin, Mechanical stress relaxation in ion-implanted SOS structures, Thin Solid Films 248, 212–219 (1994),
http://dx.doi.org/10.1016/0040-6090(94)90013-2
[8] C.A. Volkert, Stress and plastic flow in silicon during amorphization by ion bombardment, J. Appl. Phys. 70(7), 3521–3527 (1994),
http://dx.doi.org/10.1063/1.349247
[9] L. Pranevičius, S. Tamulevičius, L. Puodžiukynas, and A. Matiukas, Application of laser interferometer systems for the study of ion interaction with solid, Phys. Status Solidi 96, K157–K161 (1986),
http://dx.doi.org/10.1002/pssa.2210960252
[10] K.F. Badawi, P.H. Coudeau, J. Pacaud, C. Jaouen, J. Delafand, A. Naudou, and G. Gladyszewski, X-ray diffraction study of residual stress modification in Cu/W superlattices irradiated by light and heavy ions, Nucl. Instrum. Methods Phys. Res. B 80/81, 404–407 (1993),
http://dx.doi.org/10.1016/0168-583X(93)96149-7
[11] Z.E. Horvath, G. Peto, E. Zsoldos, and J. Gyalai, Strain in As+ and Sb+ implanted and annealed ⟨100⟩ Si, Nucl. Instrum. Methods Phys. Res. B 80/81, 552–555 (1993),
http://dx.doi.org/10.1016/0168-583X(93)96179-G
[12] B.B. Sharma, S.R. Gupta, V. Kumar, U. Tiwari, P. Sen, and G.K. Mehta, XRT mapping of strain induced by 200 MeV Ag14+ ions in Si(001), Mater. Chem. Phys. 54, 293–295 (1998),
http://dx.doi.org/10.1016/S0254-0584(98)00074-1
[13] J. Dennis and E.B. Hale, Crystalline to amorphous transformation in ion-implanted silicon: A composite model, J. Appl. Phys. 49(3), 1119–1127 (1978),
http://dx.doi.org/10.1063/1.325049
[14] H. Trinkaus, Ion beam induced amorphisation of crystalline solids: Mechanisms and modelling, Mater. Sci. Forum 248, 3–12 (1997),
http://dx.doi.org/10.4028/www.scientific.net/MSF.248-249.3
[15] G. Bai and M.-A. Nicolet, Defects production and annealing in self-implanted Si, J. Appl. Phys. 70(2), 649–655 (1991),
http://dx.doi.org/10.1063/1.349668
[16] H. Trinkaus and A.I. Ryazanov, Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment, Phys. Rev. Lett. 74(25), 5072–5075 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.5072
[17] S.G. Mayr, Y. Ashkenazy, and R.S. Averback, Evolution of thin-film morphologies during ion beam bombardment, Nucl. Instrum. Methods Phys. Res. B 212, 246–252 (2003),
http://dx.doi.org/10.1016/S0168-583X(03)01421-6
[18] S. Tamulevičius and I. Požėla, Stress and strain in the ion implanted crystalline silicon, Materials Science (Medžiagotyra) 2(5), 32–34 (1997)
[19] S. Tamulevičius and I. Požėla, Dynamics of the integral stress and strain in the ion implanted silicon, in: Proc. of International Conference on Plasma Physics and Plasma Technology (PPPT-2) (Minsk, 1997)
[20] S. Tamulevičius, I. Požėla, and J. Jankauskas, Integral stress in ion-implanted silicon, J. Phys. D 31(7), 2991–2996 (1998),
http://dx.doi.org/10.1088/0022-3727/31/21/002
[21] D. Girdauskienė and I. Požėla, Elastic stress in ion-implanted crystals of silicon, Lithuanian J. Phys. 39(1), 69–73 (1999)
[22] M. Bartenev and D. Sanditov, Relaxation Processes in Glass-like Systems (Nauka, Novosibirsk, 1986) [in Russian]
[23] L. Pranevičius and J. Dudonis, Ion Beam Modification of Solids (Mokslas, Vilnius, 1980)
[24] L.I. Fedina, On the recombination and the interaction of intrinsic point defects with the surface during point defect clustering in Si crystal, Fiz. Tekh. Poluprovodn. 35(9), 1120–1126 (2001),
http://dx.doi.org/10.1134/1.1403572
[25] K.G. McQuhae and A.S. Brown, The lattice contraction coefficient of boron and phosphorus in silicon, Solid State Electron. 15, 259–264 (1972),
http://dx.doi.org/10.1016/0038-1101(72)90079-2
[26] T. Erdey-Gruz, Grundlagen der Struktur der Materie (Mir, Moscow, 1976)
[27] E.P. Eer Nisse, Sensitive technique for studying ion-implantation damage, Appl. Phys. Lett. 18(12), 581–583 (1971),
http://dx.doi.org/10.1063/1.1653549
[28] J.P. Biersack and L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods Phys. Res. 174, 257–269 (1980),
http://dx.doi.org/10.1016/0029-554X(80)90440-1