[PDF]
http://dx.doi.org/10.3952/lithjphys.44607
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 457–464 (2004)
OPTICAL PROPERTIES OF AMORPHOUS
HYDROGENATED CARBON FILMS
G.J. Babonasa,b, A. Rėzaa,c, A. Grigonisdd,
D. Tribandisd, R. Tamaševičiusa, and A.
Kindurysa
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
bVilnius Gediminas Technical University,
Saulėtekio 11, LT-10223 Vilnius, Lithuania
cVilnius Pedagogical University, Studentų 39,
LT-08106 Vilnius, Lithuania
dKaunas University of Technology, Studentų 50,
LT-51368 Kaunas, Lithuania
Received 22 October 2003
Amorphous diamond-like hydrogenated carbon
films grown on a Si substrate from C2H2 + H2
plasma were investigated. The ellipsometric and reflectance
technique was used to reveal the optical constants of a-C:H films
from the optical response of the complex system in the UV–VIS–NIR
spectral range of 0.5–5.0 eV. The model of an effective film was
used for a-C:H films though in the analysis of the optical
response a multilayer model was applied. Particular features of
optical properties were correlated to the technological
peculiarities and structural characteristics of a-C:H films grown
from C2H2 + H2 plasma.
Keywords: amorphous diamond like hydrogenated carbon films,
ellipsometry
PACS: 78.66.Jg, 81.05.Uw
AMORFINIŲ HIDROGENIZUOTŲ ANGLIES
SLUOKSNIŲ OPTINĖS SAVYBĖS
G.J. Babonasa,b, A. Rėzaa,c, A. Grigonisdd,
D. Tribandisd, R. Tamaševičiusa, A. Kindurysa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
cVilniaus pedagoginis universitetas, Vilnius,
Lietuva
dKauno technologijos universitetas, Kaunas,
Lietuva
Tirti amorfiniai deimanto tipo hidrogenizuoti
anglies sluoksniai, užauginti ant Si padėklų iš C2H2
+ H2 plazmos. Iš šios kompleksinės sistemos optinio
atsako UV–VIS–IR spektro ruože (1–5 eV), tiriamo elipsometriniu ir
atspindžio metodais, įvertintos a-C:H sluoksnių optinės
konstantos. Nagrinėjami a-C:H sluoksniai apibūdinti efektyvaus
sluoksnio modeliu, tačiau optinis atsakas analizuotas
daugiasluoksniu modeliu. Optinių a-C:H sluoksnių, išaugintų iš C2H2
+ H2 plazmos, savybių būdingi bruožai buvo susieti su
technologijos ir sandaros ypatumais.
References / Nuorodos
[1] J. Robertson, Amorphous carbon, Adv. Phys. 35, 317–374
(1986),
http://dx.doi.org/10.1080/00018738600101911
[2] D.L. Pappas, K.L. Saenger, J. Bruley, W. Krakow, J.J. Cuomo, T.
Gu, and R.W. Collins, Pulsed laser deposition of diamond-like carbon
films, J. Appl. Phys. 71, 5675–5684 (1992),
http://dx.doi.org/10.1063/1.350501
[3] J.J. Hauser, Electrical, structural and optical properties of
amorpous carbon, J. Non-Cryst. Solids 23, 21–41 (1977),
http://dx.doi.org/10.1016/0022-3093(77)90035-7
[4] M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T.
Akamatsu, Raman spectra of diamond-like amorphous carbon films, J.
Appl. Phys. 64, 6464–6468 (1988),
http://dx.doi.org/10.1063/1.342063
[5] S. Gupta, B.R. Weiner, and G. Morell, Ex situ
spectroscopic ellipsometry and Raman spectroscopy investigations of
chemical vapor deposited sulfur incorporated nanocrystalline carbon
thin films, J. Appl. Phys. 92, 5457–5462 (2002),
http://dx.doi.org/10.1063/1.1511269
[6] S. Xu, B.K. Tay, H.S. Tan, L. Zhong, Y.Q. Tu, S.R.P. Silva, and
W.I. Milne, Properties of carbon ion deposited tetrahedral amorphous
carbon films as a function of ion energy, J. Appl. Phys. 79,
7234–7240 (1996),
http://dx.doi.org/10.1063/1.361440
[7] M.J. Paterson, Energy dependent structure changes in ion beam
deposited a-C:H, Diamond Relat. Mater. 5, 1407–1413 (1996),
http://dx.doi.org/10.1016/S0925-9635(96)00571-7
[8] T. Schwarz-Sellinger, A. von Keudell, and W. Jacob, Plasma
chemical vapor deposition of hydrocarbon films: The influence of
hydrocarbon source gas on the film properties, J. Appl. Phys. 86,
3988–3996 (1999),
http://dx.doi.org/10.1063/1.371318
[9] J. Hong, A. Goulett, and G. Turban, Ellipsometry and Raman study
on hydrogenated amorphous carbon (a-C:H) films deposited in a dual
ECR-r.f. plasma, Thin Solid Films 352, 41–48 (1999),
http://dx.doi.org/10.1016/S0040-6090(99)00298-9
[10] B. Hong, M. Wakagi, R.W. Collins, I. An, N.C. Engdahl, W.
Drawl, and R. Messier, Real-time spectroscopic ellipsometry studies
of diamond film growth by microwave plasma-enhanced chemical vapor
deposition, Diamond Relat. Mater. 3, 431–437 (1994),
http://dx.doi.org/10.1016/0925-9635(94)90198-8
[11] H. Lee, I.-Y. Kim, S.-S. Han, B.-S. Bae, M.K. Choi, and I.-S.
Yang, Spectroscopic ellipsometry and Raman study of fluorinated
nanocrystalline carbon thin films, J. Appl. Phys. 90,
813–818 (2001),
http://dx.doi.org/10.1063/1.1378337
[12] L. Fayette, B. Marcus, M. Mermoux, L. Abello, and G. Lucazeau,
In-situ Raman investigation of diamond films during growth
and etching processes, Diamond Relat. Mater. 3, 438–442
(1994),
http://dx.doi.org/10.1016/0925-9635(94)90199-6
[13] X. Zhang, W.H. Weber, W.C. Vassell, T.J. Potter, and M.A.
Tamor, Optical study of silicon-containing amorphous hydrogenated
carbon, J. Appl. Phys. 83, 2820–2825 (1998),
http://dx.doi.org/10.1063/1.367042
[14] Y. Cong, R.W. Collins, G.F. Epps, and H. Winduschmann,
Spectroellipsometry characterization of optical quality
vapor-deposited diamond thin films, Appl. Phys. Lett. 58,
819–821 (1991),
http://dx.doi.org/10.1063/1.104499
[15] B. Hong, J. Lee, R.W. Collins, Y. Kuang, W. Drawl, R. Messier,
T.T. Tsong, and Y.E. Strausser, Effects of processing conditions on
the growth of nanocrystalline diamond thin films: Real time
spectroscopic ellipsometry studies, Diamond Relat. Mater. 6,
55–80 (1997),
http://dx.doi.org/10.1016/S0925-9635(96)00591-2
[16] C.E. Nebel, Electronic properties of CVD diamond, Semicond.
Sci. Technol. 18, S1–S11 (2003),
http://dx.doi.org/10.1088/0268-1242/18/3/301
[17] J. Robertson, Electronic and atomic structure of diamond-like
carbon, Semicond. Sci. Technol. 18, S12–S19 (2003),
http://dx.doi.org/10.1088/0268-1242/18/3/302
[18] J. Robertson, Recombination and photoluminescence mechanism in
hydrogenated amorphous carbon, Phys. Rev. B 53, 16302–16305
(1996),
http://dx.doi.org/10.1103/PhysRevB.53.16302
[19] P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J.
Amaratunga, W.I. Milne, and J. Koskinen, Properties of
filtered-ion-beam-deposited diamond-like carbon as a function of ion
energy, Phys. Rev. B 48, 4777–4782 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.4777
[20] R. Robertson, J. Robertson, and G.A.J. Amaratunga,
Photoluminescence behavior of hydrogenated amorphous carbon, J.
Appl. Phys. 80, 2998–3003 (1996),
http://dx.doi.org/10.1063/1.363158
[21] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra
of disordered and amorphous carbon, Phys. Rev. B 61,
14095–14107 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.14095
[22] D. Tribandis, A. Grigonis, V. Kopustinskas, and S. Gabrenas,
Properties of diamond-type carbon coatings obtained from mixture of
C2H2/H2, in: Taikomoji Fizika
(Applied Physics), Proc. Conf. “Lithuanian Science and Industry”
(Technologija, Kaunas, 2002) pp. 39–40
[23] M. Silinskas and A. Grigonis, Low energy post-growth
irradiation of amorphous hydrogenated carbon (a-C:H) films, Diamond
Relat. Mater. 11, 1026–1030 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00734-8
[24] A. Galickas, Regression analysis in experimental technique,
Lithuanian J. Phys. 39, 149–153 (1999)
[25] G.-J. Babonas, L. Leonyuk, V. Maltsev, R. Szymczak, A. Reza, M.
Baran, and L. Dapkus, Physical properties of (M2Cu2O3)m(CuO2)n
(M=Ca, Sr, Bi) single crystals with Bi-2212 phase on their surface,
Acta Phys. Pol. A 100, 553–563 (2001),
http://dx.doi.org/10.12693/APhysPolA.100.553
[26] A. Matulis and J. Babonas, Program “Reflect”, in: Proc. SPI
14th Conf. (Semiconductor Physics Institute, Vilnius, 2002)
[27] M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Oxford, 1968)
[28] http://www.sopra-sa.com/indices.htm
[29] S. Xu, L.K. Cheah, and B.K. Tay, Spectroscopic ellipsometry
studies of tetrahedral amorphous carbon prepared by filtered
cathodic vacuum arc technique, Thin Solid Films 312, 160–169
(1998),
http://dx.doi.org/10.1016/S0040-6090(97)00742-6
[30] A. von Keudell and W. Jacob, Interaction of hydrogen plasmas
with hydrocarbon films, investigated by infrared spectroscopy using
an optical cavity substrate, J. Vac. Sci. Technol. A 15,
402–407 (1997),
http://dx.doi.org/10.1116/1.580498
[31] U. Rossow, Optical characterization of porous materials, Phys.
Status Solidi A 184, 51–78 (2001),
http://dx.doi.org/10.1002/1521-396X(200103)184:1<51::AID-PSSA51>3.0.CO;2-Q
[32] A.R. Forouhi and I. Bloomer, Optical dispersion relations for
amorphous semiconductors and amorphous dielectrics, Phys. Rev. B 34,
7018–7026 (1986),
http://dx.doi.org/10.1103/PhysRevB.34.7018
[33] N. Savvides, Optical constants and associated functions of
metastable diamond-like amorphous carbon films in the energy range
0.5–7.3 eV, J. Appl. Phys. 59, 4133–4145 (1986),
http://dx.doi.org/10.1063/1.336672
[34] G.E. Jellison and F.A. Modine, Parametrization of the optical
functions of amorphous materials in the interband region, Appl.
Phys. Lett 69, 371–373 (1996),
http://dx.doi.org/10.1063/1.118064