[PDF]    http://dx.doi.org/10.3952/lithjphys.44607

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 457–464 (2004)


OPTICAL PROPERTIES OF AMORPHOUS HYDROGENATED CARBON FILMS
G.J. Babonasa,b, A. Rėzaa,c, A. Grigonisdd, D. Tribandisd, R. Tamaševičiusa, and A. Kindurysa
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
bVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
cVilnius Pedagogical University, Studentų 39, LT-08106 Vilnius, Lithuania
dKaunas University of Technology, Studentų 50, LT-51368 Kaunas, Lithuania

Received 22 October 2003

Amorphous diamond-like hydrogenated carbon films grown on a Si substrate from C2H2 + H2 plasma were investigated. The ellipsometric and reflectance technique was used to reveal the optical constants of a-C:H films from the optical response of the complex system in the UV–VIS–NIR spectral range of 0.5–5.0 eV. The model of an effective film was used for a-C:H films though in the analysis of the optical response a multilayer model was applied. Particular features of optical properties were correlated to the technological peculiarities and structural characteristics of a-C:H films grown from C2H2 + H2 plasma.
Keywords: amorphous diamond like hydrogenated carbon films, ellipsometry
PACS: 78.66.Jg, 81.05.Uw


AMORFINIŲ HIDROGENIZUOTŲ ANGLIES SLUOKSNIŲ OPTINĖS SAVYBĖS
G.J. Babonasa,b, A. Rėzaa,c, A. Grigonisdd, D. Tribandisd, R. Tamaševičiusa, A. Kindurysa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva
cVilniaus pedagoginis universitetas, Vilnius, Lietuva
dKauno technologijos universitetas, Kaunas, Lietuva

Tirti amorfiniai deimanto tipo hidrogenizuoti anglies sluoksniai, užauginti ant Si padėklų iš C2H2 + H2 plazmos. Iš šios kompleksinės sistemos optinio atsako UV–VIS–IR spektro ruože (1–5 eV), tiriamo elipsometriniu ir atspindžio metodais, įvertintos a-C:H sluoksnių optinės konstantos. Nagrinėjami a-C:H sluoksniai apibūdinti efektyvaus sluoksnio modeliu, tačiau optinis atsakas analizuotas daugiasluoksniu modeliu. Optinių a-C:H sluoksnių, išaugintų iš C2H2 + H2 plazmos, savybių būdingi bruožai buvo susieti su technologijos ir sandaros ypatumais.


References / Nuorodos


[1] J. Robertson, Amorphous carbon, Adv. Phys. 35, 317–374 (1986),
http://dx.doi.org/10.1080/00018738600101911
[2] D.L. Pappas, K.L. Saenger, J. Bruley, W. Krakow, J.J. Cuomo, T. Gu, and R.W. Collins, Pulsed laser deposition of diamond-like carbon films, J. Appl. Phys. 71, 5675–5684 (1992),
http://dx.doi.org/10.1063/1.350501
[3] J.J. Hauser, Electrical, structural and optical properties of amorpous carbon, J. Non-Cryst. Solids 23, 21–41 (1977),
http://dx.doi.org/10.1016/0022-3093(77)90035-7
[4] M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T. Akamatsu, Raman spectra of diamond-like amorphous carbon films, J. Appl. Phys. 64, 6464–6468 (1988),
http://dx.doi.org/10.1063/1.342063
[5] S. Gupta, B.R. Weiner, and G. Morell, Ex situ spectroscopic ellipsometry and Raman spectroscopy investigations of chemical vapor deposited sulfur incorporated nanocrystalline carbon thin films, J. Appl. Phys. 92, 5457–5462 (2002),
http://dx.doi.org/10.1063/1.1511269
[6] S. Xu, B.K. Tay, H.S. Tan, L. Zhong, Y.Q. Tu, S.R.P. Silva, and W.I. Milne, Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy, J. Appl. Phys. 79, 7234–7240 (1996),
http://dx.doi.org/10.1063/1.361440
[7] M.J. Paterson, Energy dependent structure changes in ion beam deposited a-C:H, Diamond Relat. Mater. 5, 1407–1413 (1996),
http://dx.doi.org/10.1016/S0925-9635(96)00571-7
[8] T. Schwarz-Sellinger, A. von Keudell, and W. Jacob, Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties, J. Appl. Phys. 86, 3988–3996 (1999),
http://dx.doi.org/10.1063/1.371318
[9] J. Hong, A. Goulett, and G. Turban, Ellipsometry and Raman study on hydrogenated amorphous carbon (a-C:H) films deposited in a dual ECR-r.f. plasma, Thin Solid Films 352, 41–48 (1999),
http://dx.doi.org/10.1016/S0040-6090(99)00298-9
[10] B. Hong, M. Wakagi, R.W. Collins, I. An, N.C. Engdahl, W. Drawl, and R. Messier, Real-time spectroscopic ellipsometry studies of diamond film growth by microwave plasma-enhanced chemical vapor deposition, Diamond Relat. Mater. 3, 431–437 (1994),
http://dx.doi.org/10.1016/0925-9635(94)90198-8
[11] H. Lee, I.-Y. Kim, S.-S. Han, B.-S. Bae, M.K. Choi, and I.-S. Yang, Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films, J. Appl. Phys. 90, 813–818 (2001),
http://dx.doi.org/10.1063/1.1378337
[12] L. Fayette, B. Marcus, M. Mermoux, L. Abello, and G. Lucazeau, In-situ Raman investigation of diamond films during growth and etching processes, Diamond Relat. Mater. 3, 438–442 (1994),
http://dx.doi.org/10.1016/0925-9635(94)90199-6
[13] X. Zhang, W.H. Weber, W.C. Vassell, T.J. Potter, and M.A. Tamor, Optical study of silicon-containing amorphous hydrogenated carbon, J. Appl. Phys. 83, 2820–2825 (1998),
http://dx.doi.org/10.1063/1.367042
[14] Y. Cong, R.W. Collins, G.F. Epps, and H. Winduschmann, Spectroellipsometry characterization of optical quality vapor-deposited diamond thin films, Appl. Phys. Lett. 58, 819–821 (1991),
http://dx.doi.org/10.1063/1.104499
[15] B. Hong, J. Lee, R.W. Collins, Y. Kuang, W. Drawl, R. Messier, T.T. Tsong, and Y.E. Strausser, Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies, Diamond Relat. Mater. 6, 55–80 (1997),
http://dx.doi.org/10.1016/S0925-9635(96)00591-2
[16] C.E. Nebel, Electronic properties of CVD diamond, Semicond. Sci. Technol. 18, S1–S11 (2003),
http://dx.doi.org/10.1088/0268-1242/18/3/301
[17] J. Robertson, Electronic and atomic structure of diamond-like carbon, Semicond. Sci. Technol. 18, S12–S19 (2003),
http://dx.doi.org/10.1088/0268-1242/18/3/302
[18] J. Robertson, Recombination and photoluminescence mechanism in hydrogenated amorphous carbon, Phys. Rev. B 53, 16302–16305 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.16302
[19] P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, and J. Koskinen, Properties of filtered-ion-beam-deposited diamond-like carbon as a function of ion energy, Phys. Rev. B 48, 4777–4782 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.4777
[20] R. Robertson, J. Robertson, and G.A.J. Amaratunga, Photoluminescence behavior of hydrogenated amorphous carbon, J. Appl. Phys. 80, 2998–3003 (1996),
http://dx.doi.org/10.1063/1.363158
[21] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61, 14095–14107 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.14095
[22] D. Tribandis, A. Grigonis, V. Kopustinskas, and S. Gabrenas, Properties of diamond-type carbon coatings obtained from mixture of C2H2/H2, in: Taikomoji Fizika (Applied Physics), Proc. Conf. “Lithuanian Science and Industry” (Technologija, Kaunas, 2002) pp. 39–40
[23] M. Silinskas and A. Grigonis, Low energy post-growth irradiation of amorphous hydrogenated carbon (a-C:H) films, Diamond Relat. Mater. 11, 1026–1030 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00734-8
[24] A. Galickas, Regression analysis in experimental technique, Lithuanian J. Phys. 39, 149–153 (1999)
[25] G.-J. Babonas, L. Leonyuk, V. Maltsev, R. Szymczak, A. Reza, M. Baran, and L. Dapkus, Physical properties of (M2Cu2O3)m(CuO2)n (M=Ca, Sr, Bi) single crystals with Bi-2212 phase on their surface, Acta Phys. Pol. A 100, 553–563 (2001),
http://dx.doi.org/10.12693/APhysPolA.100.553
[26] A. Matulis and J. Babonas, Program “Reflect”, in: Proc. SPI 14th Conf. (Semiconductor Physics Institute, Vilnius, 2002)
[27] M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1968)
[28] http://www.sopra-sa.com/indices.htm
[29] S. Xu, L.K. Cheah, and B.K. Tay, Spectroscopic ellipsometry studies of tetrahedral amorphous carbon prepared by filtered cathodic vacuum arc technique, Thin Solid Films 312, 160–169 (1998),
http://dx.doi.org/10.1016/S0040-6090(97)00742-6
[30] A. von Keudell and W. Jacob, Interaction of hydrogen plasmas with hydrocarbon films, investigated by infrared spectroscopy using an optical cavity substrate, J. Vac. Sci. Technol. A 15, 402–407 (1997),
http://dx.doi.org/10.1116/1.580498
[31] U. Rossow, Optical characterization of porous materials, Phys. Status Solidi A 184, 51–78 (2001),
http://dx.doi.org/10.1002/1521-396X(200103)184:1<51::AID-PSSA51>3.0.CO;2-Q
[32] A.R. Forouhi and I. Bloomer, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics, Phys. Rev. B 34, 7018–7026 (1986),
http://dx.doi.org/10.1103/PhysRevB.34.7018
[33] N. Savvides, Optical constants and associated functions of metastable diamond-like amorphous carbon films in the energy range 0.5–7.3 eV, J. Appl. Phys. 59, 4133–4145 (1986),
http://dx.doi.org/10.1063/1.336672
[34] G.E. Jellison and F.A. Modine, Parametrization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett 69, 371–373 (1996),
http://dx.doi.org/10.1063/1.118064