[PDF]    http://dx.doi.org/10.3952/lithjphys.44608

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 44, 465–476 (2004)


FORMATION AND INVESTIGATION OF POROUS SiO2 FILMS ON Si
R. Šustavičiūtėa,b, I. Šimkienėa,b, J. Sabataitytėa, A. Rėzaa, A. Kindurysa, R. Tamaševičiusa,c, and J. Babonasa,c
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
bVilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
cVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 1October 2004

Porous silica layers on Si substrates were produced by sol–gel spin-on technique. The structural studies and ellipsometric measurements have been carried out in order to investigate the dependence of silica properties on growth technology and thermal annealing. The dense SiO2 layers from acid tetraethoxysilane-based precursors and the layers of increased porosity obtained from precursors containing surfactant cethyltrimethylammonia bromide were investigated. The hybrid type Fe-doped silica layers were also produced and studied. The provided investigations have shown that the method used is perspective for fabrication of porous silica layers and for obtaining hybrid samples.
Keywords: silica layers, morphology, ellipsometry
PACS: 61.43.–j, 61.43.Gt, 78.66.Nk, 78.66.Sq
This work was reported at the International Conference on Structure and Spectroscopy, September 23–26, 2004, Vilnius, Lithuania


PORĖTŲJŲ SiO2 SLUOKSNIŲ ANT Si SUDARYMAS IR TYRIMAS
R. Šustavičiūtėa,b, I. Šimkienėa,b, J. Sabataitytėa, A. Rėzaa, A. Kindurysa, R. Tamaševičiusa,c, J. Babonasa,c
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
cVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Zolio ir gelio bei sukininio padengimo metodu pagaminti ir ištyrinėti įvairūs porėtojo silicio dioksido sluoksniai ant Si padėklų. Panaudojant rastrinį elektroninį ir atominės jėgos mikroskopus, buvo tiriama pagamintų sluoksnių morfologija, o jų optinės savybės buvo nustatomos iš elipsometrinių matavimų. Nagrinėta Si dioksido sluoksnių savybių priklausomybė nuo gaminimo ir atkaitinimo sąlygų. Tankūs vienalyčiai 5–9% vidutinio porėtumo ir 250 nm paviršiaus netolygumo SiO2 sluoksniai buvo pagaminti iš tetraetoksisilano pagrindu paruoštų tirpalų ant ∅5 cm Si plokštelių. Šių ∼250 nm storio sluoksnių porėtumas, einant nuo paviršiaus į padėklą, keitėsi 7–23% ribose. SiO2 sluoksnių, atkaitintų 300–600 °C temperatūroje, vidutinis lūžio rodiklis atitinkamai padidėjo iki 1,42–1,46. Padidinto porėtumo Si dioksido sluoksniai buvo pagaminti iš tirpalo, kuriame buvo cetiltrimetilamonio bromidas, veikiantis kaip surfaktantas. Tos serijos bandiniuose atkaitinto SiO2 sluoksnio porėtumas siekė ∼65%, palyginus su 7–10% porėtumu naujai pagamintuose ir dar neatkaitintuose sluoksniuose. Taip pat buvo pagaminti ir ištirti hibridiniai dariniai, porėtieji Si dioksido sluoksniai su įterptomis Fe ir Fe oksidų dalelėmis. Remiantis spektroskopiniais tyrimais išaiškinta, kad Fe oksidai yra Fe2O3, Fe3O4 ir FeOOH, o atkaitintuose sluoksniuose padidėja santykinis Fe3O4 kiekis.


References / Nuorodos


[1] I. Šimkienė, Porous dielectric and semiconductor films in nanotechnology, Lithuanian J. Phys. 43, 319–334 (2003)
[2] P. Moriarty, Nanostructured materials, Rep. Progr. Phys. 64, 297–381 (2001),
http://dx.doi.org/10.1088/0034-4885/64/3/201
[3] N.K. Raman, M.T. Anderson, and C.J. Brinker, Template-based approaches to the preparation of amorphous, nanoporous silicas, Chem. Mater. 8, 1682–1701 (1996),
http://dx.doi.org/10.1021/cm960138+
[4] C.J. Brinker and G.W. Scherer, Sol–Gel Science, The Physics and Chemistry of Sol–Gel Processing (Academic Press, San Diego, 1990)
[5] G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, A new method to control nano-porous structure of sol–gel-derived silica films and their properties, Mater. Res. Bull. 36, 2127–2139 (2001),
http://dx.doi.org/10.1016/S0025-5408(01)00691-2
[6] P. Tandon and H. Boek, Experimental and theoretical studies of flame hydrolysis deposition process for making glasses for optical planar devices, J. Non-Cryst. Solids 317, 275–289 (2003),
http://dx.doi.org/10.1016/S0022-3093(02)01817-3
[7] S. Das, S. Roy, A. Patra, and P.K. Biswas, Study of refractive index and physical thickness of porous silica films with ageing in hydrated ammonia and air, Mater. Lett. 57, 2320–2325 (2003),
http://dx.doi.org/10.1016/S0167-577X(02)01219-3
[8] M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, and I.A. Aksay, Microscopic patterning orientated mesoscopic silica through guided growth, Nature 390, 674–676 (1997),
http://dx.doi.org/10.1038/37764
[9] N.K. Raman, M.T. Anderson, and C.J. Brinker, Template-based approaches to the preparation of amorphous, nanoporous silicas, Chem. Mater. 8, 1682–1701 (1996),
http://dx.doi.org/10.1021/cm960138+
[10] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)
[11] G.J. Babonas, L. Leonyuk, V. Maltsev, R. Szymczak, A. Reza, M. Baran, and L. Dapkus, Physical properties of (M2Cu2O3)m(CuO2)n (M=Ca, Sr, Bi) single crystals with Bi-2212 phase on their surface, Acta Phys. Pol. A 100, 553–563 (2001),
http://dx.doi.org/10.12693/APhysPolA.100.553
[12] M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1968)
[13] C.M. Herzinger, B. Johns, W.A. McGaham, J.A. Woollam, and W. Paulson, Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83, 3323–3336 (1998),
http://dx.doi.org/10.1063/1.367101
[14] http://www.sopra-sa.com
[15] G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, A novel route to control refractive index of sol–gel derived nanoporous silica films used as broadband antireflective coatings, Mater. Sci. Engn. B 78, 135–139 (2000),
http://dx.doi.org/10.1016/S0921-5107(00)00529-8
[16] J. Ohta, H. Imai, and H. Hirashima, Direct deposition of silica films using silicon alkoxide solution, J. Non-Cryst. Solids 241, 91–97 (1998),
http://dx.doi.org/10.1016/S0022-3093(98)00772-8
[17] S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, G. Piccaluga, and S. Solinas, IR and NMR study of nanoparticle-support interactions in Fe2O3–SiO2 nanocomposite prepared by sol–gel method, Nanostruct. Mater. 11, 573–586 (1999),
http://dx.doi.org/10.1016/S0965-9773(99)00335-9
[18] X. Wang, X. Chen, X. Ma, H. Zheng, M. Ji, and Z. Zhang, Low-temperature synthesis of α-Fe2O3 nanoparticles with a closed cage structure, Chem. Phys. Lett. 384, 391–393 (2004),
http://dx.doi.org/10.1016/j.cplett.2003.12.074
[19] B. Smarsly, G. Garnweitner, R. Assink, and C.J. Brinker, Preparation and characterization of mesostructured polymer-functionalized sol–gel-derived thin films, Prog. Organic Coatings 47, 393–400 (2003),
http://dx.doi.org/10.1016/j.porgcoat.2003.08.016
[20] S. Pevzner, O. Regevu, and R. Yerushalmi-Rozen, Thin films of mesoporous silica: Preparation and characterization, Current Opinion in Colloid & Interface Science 4, 420–427 (2000),
http://dx.doi.org/10.1016/S1359-0294(00)00018-2
[21] I. Simkiene, J. Sabataityte, J.G. Babonas, A. Reza, R. Szymczak, H. Szymczak, M. Baran, M. Kozlowski, and S. Gierlotka, Sol–gel processed iron-containing silica films on Si, Proc. SPIE (accepted)
[22] I. Šimkienė, M. Baran, G.J. Babonas, R.A. Bendorius, A. Reza, R. Szymczak, P. Aleshkevych, R. Šustavičiūtė, and R. Tamaševičius, Formation of iron-containing clusters in silica of predetermined porosity, Acta Phys. Pol. A (submitted)
[23] Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 17, ed. K.-H. Hellwege (Springer-Verlag, Berlin, 1982)
[24] N. Ozer and F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide films, Sol. Energy Mater. Sol. Cells 56, 141–152 (1999),
http://dx.doi.org/10.1016/S0927-0248(98)00152-4
[25] W.F. Fontijn, P.J. van der Zaag, M.A.C. Devillers, V.A.M. Brabers, and R. Metselaar, Optical and magneto-optical polar Kerr spectra of Fe3O4 and Mg2+- or Al3+-substituted Fe3O4, Phys. Rev. B 56, 5432–5442 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.5432