[PDF]
http://dx.doi.org/10.3952/lithjphys.44608
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 44, 465–476 (2004)
FORMATION AND INVESTIGATION OF
POROUS SiO2 FILMS ON Si ∗
R. Šustavičiūtėa,b, I. Šimkienėa,b, J.
Sabataitytėa, A. Rėzaa, A. Kindurysa,
R. Tamaševičiusa,c, and J. Babonasa,c
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
bVilnius University, Saulėtekio 9, LT-10222
Vilnius, Lithuania
cVilnius Gediminas Technical University,
Saulėtekio 11, LT-10223 Vilnius, Lithuania
Received 1October 2004
Porous silica layers on Si substrates were
produced by sol–gel spin-on technique. The structural studies and
ellipsometric measurements have been carried out in order to
investigate the dependence of silica properties on growth
technology and thermal annealing. The dense SiO2 layers
from acid tetraethoxysilane-based precursors and the layers of
increased porosity obtained from precursors containing surfactant
cethyltrimethylammonia bromide were investigated. The hybrid type
Fe-doped silica layers were also produced and studied. The
provided investigations have shown that the method used is
perspective for fabrication of porous silica layers and for
obtaining hybrid samples.
Keywords: silica layers, morphology, ellipsometry
PACS: 61.43.–j, 61.43.Gt, 78.66.Nk, 78.66.Sq
∗ This work was reported at the International Conference
on Structure and Spectroscopy, September 23–26, 2004, Vilnius,
Lithuania
PORĖTŲJŲ SiO2
SLUOKSNIŲ ANT Si SUDARYMAS IR TYRIMAS
R. Šustavičiūtėa,b, I. Šimkienėa,b, J.
Sabataitytėa, A. Rėzaa, A. Kindurysa,
R. Tamaševičiusa,c, J. Babonasa,c
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
cVilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Zolio ir gelio bei sukininio padengimo metodu
pagaminti ir ištyrinėti įvairūs porėtojo silicio dioksido
sluoksniai ant Si padėklų. Panaudojant rastrinį elektroninį ir
atominės jėgos mikroskopus, buvo tiriama pagamintų sluoksnių
morfologija, o jų optinės savybės buvo nustatomos iš
elipsometrinių matavimų. Nagrinėta Si dioksido sluoksnių savybių
priklausomybė nuo gaminimo ir atkaitinimo sąlygų. Tankūs
vienalyčiai 5–9% vidutinio porėtumo ir 250 nm paviršiaus
netolygumo SiO2 sluoksniai buvo pagaminti iš
tetraetoksisilano pagrindu paruoštų tirpalų ant ∅5 cm Si
plokštelių. Šių ∼250 nm storio sluoksnių porėtumas, einant nuo
paviršiaus į padėklą, keitėsi 7–23% ribose. SiO2
sluoksnių, atkaitintų 300–600 °C temperatūroje, vidutinis lūžio
rodiklis atitinkamai padidėjo iki 1,42–1,46. Padidinto porėtumo Si
dioksido sluoksniai buvo pagaminti iš tirpalo, kuriame buvo
cetiltrimetilamonio bromidas, veikiantis kaip surfaktantas. Tos
serijos bandiniuose atkaitinto SiO2 sluoksnio porėtumas
siekė ∼65%, palyginus su 7–10% porėtumu naujai pagamintuose ir dar
neatkaitintuose sluoksniuose. Taip pat buvo pagaminti ir ištirti
hibridiniai dariniai, porėtieji Si dioksido sluoksniai su
įterptomis Fe ir Fe oksidų dalelėmis. Remiantis spektroskopiniais
tyrimais išaiškinta, kad Fe oksidai yra Fe2O3,
Fe3O4 ir FeOOH, o atkaitintuose sluoksniuose
padidėja santykinis Fe3O4 kiekis.
References / Nuorodos
[1] I. Šimkienė, Porous dielectric and semiconductor films in
nanotechnology, Lithuanian J. Phys. 43, 319–334 (2003)
[2] P. Moriarty, Nanostructured materials, Rep. Progr. Phys. 64,
297–381 (2001),
http://dx.doi.org/10.1088/0034-4885/64/3/201
[3] N.K. Raman, M.T. Anderson, and C.J. Brinker, Template-based
approaches to the preparation of amorphous, nanoporous silicas,
Chem. Mater. 8, 1682–1701 (1996),
http://dx.doi.org/10.1021/cm960138+
[4] C.J. Brinker and G.W. Scherer, Sol–Gel Science, The Physics
and Chemistry of Sol–Gel Processing (Academic Press, San
Diego, 1990)
[5] G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B.
Fan, D. Zhou, and F. Zhang, A new method to control nano-porous
structure of sol–gel-derived silica films and their properties,
Mater. Res. Bull. 36, 2127–2139 (2001),
http://dx.doi.org/10.1016/S0025-5408(01)00691-2
[6] P. Tandon and H. Boek, Experimental and theoretical studies of
flame hydrolysis deposition process for making glasses for optical
planar devices, J. Non-Cryst. Solids 317, 275–289 (2003),
http://dx.doi.org/10.1016/S0022-3093(02)01817-3
[7] S. Das, S. Roy, A. Patra, and P.K. Biswas, Study of refractive
index and physical thickness of porous silica films with ageing in
hydrated ammonia and air, Mater. Lett. 57, 2320–2325 (2003),
http://dx.doi.org/10.1016/S0167-577X(02)01219-3
[8] M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, and I.A.
Aksay, Microscopic patterning orientated mesoscopic silica through
guided growth, Nature 390, 674–676 (1997),
http://dx.doi.org/10.1038/37764
[9] N.K. Raman, M.T. Anderson, and C.J. Brinker, Template-based
approaches to the preparation of amorphous, nanoporous silicas,
Chem. Mater. 8, 1682–1701 (1996),
http://dx.doi.org/10.1021/cm960138+
[10] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized
Light (North-Holland, Amsterdam, 1977)
[11] G.J. Babonas, L. Leonyuk, V. Maltsev, R. Szymczak, A. Reza, M.
Baran, and L. Dapkus, Physical properties of (M2Cu2O3)m(CuO2)n
(M=Ca, Sr, Bi) single crystals with Bi-2212 phase on their surface,
Acta Phys. Pol. A 100, 553–563 (2001),
http://dx.doi.org/10.12693/APhysPolA.100.553
[12] M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Oxford, 1968)
[13] C.M. Herzinger, B. Johns, W.A. McGaham, J.A. Woollam, and W.
Paulson, Ellipsometric determination of optical constants for
silicon and thermally grown silicon dioxide via a multi-sample,
multi-wavelength, multi-angle investigation, J. Appl. Phys. 83,
3323–3336 (1998),
http://dx.doi.org/10.1063/1.367101
[14] http://www.sopra-sa.com
[15] G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng,
B. Fan, D. Zhou, and F. Zhang, A novel route to control refractive
index of sol–gel derived nanoporous silica films used as broadband
antireflective coatings, Mater. Sci. Engn. B 78, 135–139
(2000),
http://dx.doi.org/10.1016/S0921-5107(00)00529-8
[16] J. Ohta, H. Imai, and H. Hirashima, Direct deposition of silica
films using silicon alkoxide solution, J. Non-Cryst. Solids 241,
91–97 (1998),
http://dx.doi.org/10.1016/S0022-3093(98)00772-8
[17] S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, G. Piccaluga,
and S. Solinas, IR and NMR study of nanoparticle-support
interactions in Fe2O3–SiO2
nanocomposite prepared by sol–gel method, Nanostruct. Mater. 11,
573–586 (1999),
http://dx.doi.org/10.1016/S0965-9773(99)00335-9
[18] X. Wang, X. Chen, X. Ma, H. Zheng, M. Ji, and Z. Zhang,
Low-temperature synthesis of α-Fe2O3
nanoparticles with a closed cage structure, Chem. Phys. Lett. 384,
391–393 (2004),
http://dx.doi.org/10.1016/j.cplett.2003.12.074
[19] B. Smarsly, G. Garnweitner, R. Assink, and C.J. Brinker,
Preparation and characterization of mesostructured
polymer-functionalized sol–gel-derived thin films, Prog. Organic
Coatings 47, 393–400 (2003),
http://dx.doi.org/10.1016/j.porgcoat.2003.08.016
[20] S. Pevzner, O. Regevu, and R. Yerushalmi-Rozen, Thin films of
mesoporous silica: Preparation and characterization, Current Opinion
in Colloid & Interface Science 4, 420–427 (2000),
http://dx.doi.org/10.1016/S1359-0294(00)00018-2
[21] I. Simkiene, J. Sabataityte, J.G. Babonas, A. Reza, R.
Szymczak, H. Szymczak, M. Baran, M. Kozlowski, and S. Gierlotka,
Sol–gel processed iron-containing silica films on Si, Proc. SPIE
(accepted)
[22] I. Šimkienė, M. Baran, G.J. Babonas, R.A. Bendorius, A. Reza,
R. Szymczak, P. Aleshkevych, R. Šustavičiūtė, and R. Tamaševičius,
Formation of iron-containing clusters in silica of predetermined
porosity, Acta Phys. Pol. A (submitted)
[23] Landolt-Börnstein, Numerical Data and Functional
Relationships in Science and Technology, Vol. 17, ed. K.-H.
Hellwege (Springer-Verlag, Berlin, 1982)
[24] N. Ozer and F. Tepehan, Optical and electrochemical
characteristics of sol–gel deposited iron oxide films, Sol. Energy
Mater. Sol. Cells 56, 141–152 (1999),
http://dx.doi.org/10.1016/S0927-0248(98)00152-4
[25] W.F. Fontijn, P.J. van der Zaag, M.A.C. Devillers, V.A.M.
Brabers, and R. Metselaar, Optical and magneto-optical polar Kerr
spectra of Fe3O4 and Mg2+- or Al3+-substituted
Fe3O4, Phys. Rev. B 56, 5432–5442
(1997),
http://dx.doi.org/10.1103/PhysRevB.56.5432