[PDF]
http://dx.doi.org/10.3952/lithjphys.45105
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 37–42 (2005)
SMALL SCALE LASER-TRIGGERED
ELECTRICAL DISCHARGES AND THEIR APPLICATION TO CHARACTERIZATION
OF PLASMA CHANNEL INDUCED BY LIGHT FILAMENTS
G. Tamošauskas, L. Šaulys, A. Dubietis, and A. Piskarskas
Department of Quantum Electronics, Vilnius University,
Saulėtekio 9, LT-01222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt
Received 7 January 2005
We experimentally investigate triggering and
guiding of kilovolt electrical discharges in air over short (few
centimetre) gaps triggered by means of 1 ps light filaments at 527
nm. A method of direct measurement of free electron density along
the plasma channel is proposed.
Keywords: self-focusing, light filament, ionization,
laser-triggered discharge
PACS: 42.65.Jx, 52.80.–s
MAŽŲ MATMENŲ LAZERIU SUKELTI
ELEKTROS IŠLYDŽIAI IR JŲ TAIKYMAS ŠVIESOS GIJŲ SUKURIAMIEMS
PLAZMOS KANALAMS APIBŪDINTI
G. Tamošauskas, L. Šaulys, A. Dubietis, A. Piskarskas
Vilniaus universitetas, Vilnius, Lietuva
Eksperimentiškai tirti mažo atstumo
kilovoltiniai elektros išlydžiai ore, sužadinami ir valdomi
pikosekundinėmis šviesos gijomis. Pasiūlytas tiesioginis metodas,
kaip, taikant šviesa indukuotus elektros išlydžius, galima
nustatyti laisvųjų elektronų, sukuriamų šviesos gijai sklindant
ore, tankį išilgai sklidimo krypties.
References / Nuorodos
[1] D.W. Koopman and T.D. Wilkerson, Channeling of an ionizing
electrical streamer by a laser beam, J. Appl. Phys. 42,
1883–1886 (1971),
http://dx.doi.org/10.1063/1.1660462
[2] X.M. Zhao, J.-C. Diels, C.Y. Wang, and J.M. Elizondo,
Femtosecond ultraviolet laser pulse induced lightning discharges in
gasses, IEEE J. Quantum Electron. 31, 599–612 (1995),
http://dx.doi.org/10.1109/3.364418
[3] S. Uchida, Y. Shimada, H. Yasuda, S. Motokoshi, C. Yamanaka, T.
Yamanaka, Z. Kawasaki, and K. Tsubakimoto, Laser-triggered lightning
in field experiments, J. Opt. Technol. 66, 199–202 (1999),
http://dx.doi.org/10.1364/JOT.66.000199
[4] N. Khan, N. Mariun, I. Aris, and J. Yeak, Laser triggered
lightning discharge, New J. Phys. 4, 61.1–20 (2002),
http://dx.doi.org/10.1088/1367-2630/4/1/361
[5] B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A.
Desparois, T.W. Johnston, J.-C. Kiefer, H. Pépin, and H.P. Mercure,
Filamentation of ultrashort pulse laser beams resulting from their
propagation over long distances in air, Phys. Plasmas 6,
1615–1621 (1999),
http://dx.doi.org/10.1063/1.873715
[6] P. Rambo, J. Schwarz, and J.-C. Diels, High-voltage electrical
discharges induced by an ultrashort-pulse UV laser system, J. Opt. A
3, 146–158 (2001),
http://dx.doi.org/10.1088/1464-4258/3/2/309
[7] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self
channeling of high-peak-power femtosecond laser pulses in air, Opt.
Lett. 20, 73–75 (1995),
http://dx.doi.org/10.1364/OL.20.000073
[8] B. La Fontaine, F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois,
T.W. Johnston, J.-C. Kieffer, H.P. Mercure, H. Pépin, and F.A.M.
Rizk, The influence of electron density on the formation of
streamers in electrical discharges triggered with ultrashort laser
pulses, IEEE Trans. Plasma Sci. 27, 688–700 (1999),
http://dx.doi.org/10.1109/27.774673
[9] P. Rambo, J. Biegert, V. Kubecek, J. Schwarz, A. Bernstein,
J.-C. Diels, R. Bernstein, and K. Stahlkopf, Laboratory tests of
laser-induced lightning discharge, J. Opt. Technol. 66,
194–198 (1999),
http://dx.doi.org/10.1364/JOT.66.000194
[10] B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F.
Genin, G. Jarry, T. Johnston, J.-C. Kiefer, F. Martin, R. Mawassi,
H. Pépin, F.A.M. Rizk, F. Vidal, C. Potvin, P. Couture, and H.P.
Mercure, Guiding large-scale spark discharges with ultrashort pulse
laser filaments, J. Appl. Phys. 88, 610–615 (2000),
http://dx.doi.org/10.1063/1.373710
[11] D. Comtois, C.Y. Chien, A. Desparois, F. Genin, G. Jarry, T.W.
Johnston, J.C. Kiefer, B. La Fontaine, F. Martin, R. Mawassi, H.
Pépin, F.A.M. Rizk, and F. Vidal, Trigerring and guiding leader
discharges using plasma channel created by an ultrashort laser
pulse, Appl. Phys. Lett. 76, 819–821 (2000),
http://dx.doi.org/10.1063/1.125595
[12] H. Pépin, D. Comtois, F. Vidal, C.Y. Chien, A. Desparois, T.W.
Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, F.A.M. Rizk, C.
Potvin, P. Couture, H.P. Mercure, A. Bondiou-Clergerie, P. Lalande,
and I. Gallimberti, Triggering and guiding high-voltage large-scale
leader discharges with sub-joule ultrashort laser pulses, Phys.
Plasmas 8, 2532–2539 (2001),
http://dx.doi.org/10.1063/1.1342230
[13] S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Huller,
and P. Mora, Femtosecond laser-guided electric discharge in air,
Phys. Rev. E 64, 057401 (2001),
http://dx.doi.org/10.1103/PhysRevE.64.057401
[14] M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B.
André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J.
Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, Triggering and guiding
megavolt discharges using laser-induced ionized filaments, Opt.
Lett. 27, 772–774 (2002),
http://dx.doi.org/10.1364/OL.27.000772
[15] A. Bondiou and I. Gallimberti, Theoretical modelling of the
development of the positive spark in long gaps, J. Phys. D 27,
1252–1266 (1994),
http://dx.doi.org/10.1088/0022-3727/27/6/024
[16] S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz,
Time-evolution of the plasma channel at the trail of a self-guided
IR femtosecond laser pulse in air, Opt. Commun. 181, 123–127
(2000),
http://dx.doi.org/10.1016/S0030-4018(00)00734-3
[17] S. Tzortzakis, M.A. Franco, Y.-B. André, A. Chiron, B.
Lamouroux, B.S. Prade, and A. Mysyrowicz, Formation of a conducting
channel in air by self-guided femtosecond laser pulses, Phys. Rev. E
60, R3505–R3507 (1999),
http://dx.doi.org/10.1103/PhysRevE.60.R3505
[18] H. Schillinger and R. Sauerbrey, Electrical conductivity of
long plasma channels in air generated by self-guided femtosecond
laser pulses, Appl. Phys. B 68, 753–756 (1999),
http://dx.doi.org/10.1007/s003400050699
[19] J. Chen and J.H. Davidson, Electron density and energy
distributions in the positive DC corona: Interpretation for
corona-enhanced chemical reactions, Plasma Chem. Plasma Process. 22,
199–224 (2001),
http://dx.doi.org/10.1023/A:1014851908545
[20] S.A. Hosseini, B. Ferland, and S.L. Chin, Measurement of
filament length generated by an intense femtosecond laser pulse
using electromagnetic radiation detection, Appl. Phys. B 76,
583–586 (2003),
http://dx.doi.org/10.1007/s00340-003-1132-8
[21] S.A. Hosseini, Q. Luo, B. Ferland, W. Liu, N. Aközbek, G. Roy,
and S.L. Chin, Effective length of filaments measurement using
backscattered fluorescence from nitrogen molecules, Appl. Phys. B 77,
697–702 (2003),
http://dx.doi.org/10.1007/s00340-003-1278-4
[22] J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C.
Favre, V. Boutou, and J.P. Wolf, Sonographic probing of laser
filaments in air, Appl. Opt. 42, 7117–7120 (2003),
http://dx.doi.org/10.1364/AO.42.007117
[23] S.A. Hosseini, J. Yu, Q. Luo, and S.L. Chin, Multiparameter
characterization of the longitudinal plasma profile of a filament: A
comparative study, Appl. Phys. B 79, 519–523 (2004),
http://dx.doi.org/10.1007/s00340-004-1589-0
[24] D. Mikalauskas, A. Dubietis, and R. Danielius, Observation of
light filaments induced in air by visible picosecond laser pulses,
Appl. Phys. B 75, 899–902 (2002),
http://dx.doi.org/10.1007/s00340-002-1051-0
[25] W. Liu, S. Petit, A. Becker, N. Aközbek, C.M. Bowden, and S. L.
Chin, Intensity clamping of a femtosecond laser pulse in condensed
matter, Opt. Commun. 202, 189–197 (2002),
http://dx.doi.org/10.1016/S0030-4018(01)01698-4