[PDF]    http://dx.doi.org/10.3952/lithjphys.45105

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 37–42 (2005)


SMALL SCALE LASER-TRIGGERED ELECTRICAL DISCHARGES AND THEIR APPLICATION TO CHARACTERIZATION OF PLASMA CHANNEL INDUCED BY LIGHT FILAMENTS
G. Tamošauskas, L. Šaulys, A. Dubietis, and A. Piskarskas
Department of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-01222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt

Received 7 January 2005

We experimentally investigate triggering and guiding of kilovolt electrical discharges in air over short (few centimetre) gaps triggered by means of 1 ps light filaments at 527 nm. A method of direct measurement of free electron density along the plasma channel is proposed.
Keywords: self-focusing, light filament, ionization, laser-triggered discharge
PACS: 42.65.Jx, 52.80.–s


MAŽŲ MATMENŲ LAZERIU SUKELTI ELEKTROS IŠLYDŽIAI IR JŲ TAIKYMAS ŠVIESOS GIJŲ SUKURIAMIEMS PLAZMOS KANALAMS APIBŪDINTI
G. Tamošauskas, L. Šaulys, A. Dubietis, A. Piskarskas
Vilniaus universitetas, Vilnius, Lietuva

Eksperimentiškai tirti mažo atstumo kilovoltiniai elektros išlydžiai ore, sužadinami ir valdomi pikosekundinėmis šviesos gijomis. Pasiūlytas tiesioginis metodas, kaip, taikant šviesa indukuotus elektros išlydžius, galima nustatyti laisvųjų elektronų, sukuriamų šviesos gijai sklindant ore, tankį išilgai sklidimo krypties.


References / Nuorodos


[1] D.W. Koopman and T.D. Wilkerson, Channeling of an ionizing electrical streamer by a laser beam, J. Appl. Phys. 42, 1883–1886 (1971),
http://dx.doi.org/10.1063/1.1660462
[2] X.M. Zhao, J.-C. Diels, C.Y. Wang, and J.M. Elizondo, Femtosecond ultraviolet laser pulse induced lightning discharges in gasses, IEEE J. Quantum Electron. 31, 599–612 (1995),
http://dx.doi.org/10.1109/3.364418
[3] S. Uchida, Y. Shimada, H. Yasuda, S. Motokoshi, C. Yamanaka, T. Yamanaka, Z. Kawasaki, and K. Tsubakimoto, Laser-triggered lightning in field experiments, J. Opt. Technol. 66, 199–202 (1999),
http://dx.doi.org/10.1364/JOT.66.000199
[4] N. Khan, N. Mariun, I. Aris, and J. Yeak, Laser triggered lightning discharge, New J. Phys. 4, 61.1–20 (2002),
http://dx.doi.org/10.1088/1367-2630/4/1/361
[5] B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Desparois, T.W. Johnston, J.-C. Kiefer, H. Pépin, and H.P. Mercure, Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air, Phys. Plasmas 6, 1615–1621 (1999),
http://dx.doi.org/10.1063/1.873715
[6] P. Rambo, J. Schwarz, and J.-C. Diels, High-voltage electrical discharges induced by an ultrashort-pulse UV laser system, J. Opt. A 3, 146–158 (2001),
http://dx.doi.org/10.1088/1464-4258/3/2/309
[7] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self channeling of high-peak-power femtosecond laser pulses in air, Opt. Lett. 20, 73–75 (1995),
http://dx.doi.org/10.1364/OL.20.000073
[8] B. La Fontaine, F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, T.W. Johnston, J.-C. Kieffer, H.P. Mercure, H. Pépin, and F.A.M. Rizk, The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses, IEEE Trans. Plasma Sci. 27, 688–700 (1999),
http://dx.doi.org/10.1109/27.774673
[9] P. Rambo, J. Biegert, V. Kubecek, J. Schwarz, A. Bernstein, J.-C. Diels, R. Bernstein, and K. Stahlkopf, Laboratory tests of laser-induced lightning discharge, J. Opt. Technol. 66, 194–198 (1999),
http://dx.doi.org/10.1364/JOT.66.000194
[10] B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Genin, G. Jarry, T. Johnston, J.-C. Kiefer, F. Martin, R. Mawassi, H. Pépin, F.A.M. Rizk, F. Vidal, C. Potvin, P. Couture, and H.P. Mercure, Guiding large-scale spark discharges with ultrashort pulse laser filaments, J. Appl. Phys. 88, 610–615 (2000),
http://dx.doi.org/10.1063/1.373710
[11] D. Comtois, C.Y. Chien, A. Desparois, F. Genin, G. Jarry, T.W. Johnston, J.C. Kiefer, B. La Fontaine, F. Martin, R. Mawassi, H. Pépin, F.A.M. Rizk, and F. Vidal, Trigerring and guiding leader discharges using plasma channel created by an ultrashort laser pulse, Appl. Phys. Lett. 76, 819–821 (2000),
http://dx.doi.org/10.1063/1.125595
[12] H. Pépin, D. Comtois, F. Vidal, C.Y. Chien, A. Desparois, T.W. Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, F.A.M. Rizk, C. Potvin, P. Couture, H.P. Mercure, A. Bondiou-Clergerie, P. Lalande, and I. Gallimberti, Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses, Phys. Plasmas 8, 2532–2539 (2001),
http://dx.doi.org/10.1063/1.1342230
[13] S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Huller, and P. Mora, Femtosecond laser-guided electric discharge in air, Phys. Rev. E 64, 057401 (2001),
http://dx.doi.org/10.1103/PhysRevE.64.057401
[14] M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, Triggering and guiding megavolt discharges using laser-induced ionized filaments, Opt. Lett. 27, 772–774 (2002),
http://dx.doi.org/10.1364/OL.27.000772
[15] A. Bondiou and I. Gallimberti, Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D 27, 1252–1266 (1994),
http://dx.doi.org/10.1088/0022-3727/27/6/024
[16] S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air, Opt. Commun. 181, 123–127 (2000),
http://dx.doi.org/10.1016/S0030-4018(00)00734-3
[17] S. Tzortzakis, M.A. Franco, Y.-B. André, A. Chiron, B. Lamouroux, B.S. Prade, and A. Mysyrowicz, Formation of a conducting channel in air by self-guided femtosecond laser pulses, Phys. Rev. E 60, R3505–R3507 (1999),
http://dx.doi.org/10.1103/PhysRevE.60.R3505
[18] H. Schillinger and R. Sauerbrey, Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses, Appl. Phys. B 68, 753–756 (1999),
http://dx.doi.org/10.1007/s003400050699
[19] J. Chen and J.H. Davidson, Electron density and energy distributions in the positive DC corona: Interpretation for corona-enhanced chemical reactions, Plasma Chem. Plasma Process. 22, 199–224 (2001),
http://dx.doi.org/10.1023/A:1014851908545
[20] S.A. Hosseini, B. Ferland, and S.L. Chin, Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection, Appl. Phys. B 76, 583–586 (2003),
http://dx.doi.org/10.1007/s00340-003-1132-8
[21] S.A. Hosseini, Q. Luo, B. Ferland, W. Liu, N. Aközbek, G. Roy, and S.L. Chin, Effective length of filaments measurement using backscattered fluorescence from nitrogen molecules, Appl. Phys. B 77, 697–702 (2003),
http://dx.doi.org/10.1007/s00340-003-1278-4
[22] J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.P. Wolf, Sonographic probing of laser filaments in air, Appl. Opt. 42, 7117–7120 (2003),
http://dx.doi.org/10.1364/AO.42.007117
[23] S.A. Hosseini, J. Yu, Q. Luo, and S.L. Chin, Multiparameter characterization of the longitudinal plasma profile of a filament: A comparative study, Appl. Phys. B 79, 519–523 (2004),
http://dx.doi.org/10.1007/s00340-004-1589-0
[24] D. Mikalauskas, A. Dubietis, and R. Danielius, Observation of light filaments induced in air by visible picosecond laser pulses, Appl. Phys. B 75, 899–902 (2002),
http://dx.doi.org/10.1007/s00340-002-1051-0
[25] W. Liu, S. Petit, A. Becker, N. Aközbek, C.M. Bowden, and S. L. Chin, Intensity clamping of a femtosecond laser pulse in condensed matter, Opt. Commun. 202, 189–197 (2002),
http://dx.doi.org/10.1016/S0030-4018(01)01698-4