[PDF]    http://dx.doi.org/10.3952/lithjphys.45106

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 43–51 (2005)


HOLE SPIN SURFACES IN WURTZITE SEMICONDUCTORS
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 15 October 2004

Spin properties of holes in the wurtzite semiconductors, when the hole with a given wave vector ballistically propagates in either heavy-, light-mass or crystal-field split-off band, are considered. Analytical solutions for an averaged hole spin are found for two important cases, when the hole wave vector is parallel and perpendicular to the hexagonal axis. Shapes of the spin surfaces are presented for these cases. It is shown that the surfaces, in general, are spheroids. However, depending on the wave vector magnitude and valence band parameters, the surfaces may also be spheres or line-shaped. The properties of the spin surfaces are illustrated for parameters of the wurtzite GaN, where the crystal field dominates in the splitting of the valence band.
Keywords: wurtzites, spintronics, valence band, spin, GaN
PACS: 71.70.Ms, 72.20.Jv, 73.40.Gk, 78.55.–m, 79.90.+b


SKYLĖS SUKINIO PAVIRŠIAI VIURCITO GARDELĖS PUSLAIDININKIUOSE
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Išnagrinėtos laisvosios skylės, kuri juda arba sunkiosios, arba lengvosios masės energetinėje juostoje, arba atskilusioje dėl kristalinio elektrinio lauko juostoje, sukinio savybės nuo valentinės juostos parametrų ir skylės bangos vektoriaus krypties bei dydžio. Rasti analiziniai sprendiniai, kurie aprašo vidutinį sukinį dviem svarbiais atvejais: kai balistinės skylės bangos vektorius nukreiptas arba lygiagrečiai, arba statmenai kristalo heksagonalinei ašiai. Parodyta, kad abiem atvejais sukinio paviršiai yra sferoidai. Priklausomai nuo skylės bangos vektoriaus ilgio bei krypties, o taip pat nuo valentinės juostos parametrų, sukinio paviršiai gali transformuotis į sferą arba į tiesę. Skylės sukinių paviršių savybės pailiustruotos GaN – puslaidininkio, kuriame vyrauja kristalinis laukas – atveju.


References / Nuorodos


[1] I. Žutić, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[2] S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulos, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, and L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides, J. Appl. Phys. 93(1), 1–13 (2003),
http://dx.doi.org/10.1063/1.1517164
[3] W. Prellier, A. Fouchet, and B. Mercey, Oxide-diluted magnetic semiconductors: A review of the experimental status, J. Phys.: Condens. Matter 15(37), R1583–R1601 (2003),
http://dx.doi.org/10.1088/0953-8984/15/37/R01
[4] A. Dargys, Coherent properties of hole spin, Lithuanian J. Phys. 43(2), 123–128 (2003)
[5] A. Dargys, Spin surfaces and trajectories in valence bands of tetrahedral semiconductors, Phys. Status Solidi B 241(1), 145–154 (2004),
http://dx.doi.org/10.1002/pssb.200301909
[6] A. Dargys, Hole spin surfaces in A3B5 compounds, Phys. Status Solidi B 241(13), 2954–2961 (2004),
http://dx.doi.org/10.1002/pssb.200402078
[7] D.K. Young, E. Johnston-Halperin, D.D. Awschalom, Y. Ohno, and H. Ohno, Anisotropic electrical spin injection in ferromagnetic semiconductor heterostructures, Appl. Phys. Lett. 80(9), 1598–1600 (2002),
http://dx.doi.org/10.1063/1.1458535
[8] A. Dargys, Ultrafast control of hole spin by electric field in semiconductors, IEEE J. Selected Topics Quantum Electron. 10(1), 155–158 (2004),
http://dx.doi.org/10.1109/JSTQE.2004.824078
[9] A. Dargys, Hole dynamics under π-pulse excitation, Phys. Rev. B 70(12), 125207-1–11 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.125207
[10] A. Dargys, Control of valence-band hole spin by electric field, Acta Phys. Pol. A 105(3), 295–306 (2004).
http://dx.doi.org/10.12693/APhysPolA.105.295
[11] G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974) Chap. 5
[12] E.O. Kane, The k · p method, in: Semiconductors and Semimetals, Vol. 1, eds. R.K. Willardson and A.C. Beer (Academic Press, New York, 1966) p. 75–99
[13] S.L. Chuang and C.S. Chang, k · p method for strained wurtzite semiconductors, Phys. Rev. B 54(4), 2491–2504 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.2491
[14] G.B. Ren, Y.M. Liu, and P. Blood, Valence-band structure of wurtzite GaN including the spin–orbit interaction, Appl. Phys. Lett. 74(8), 1117–1119 (1999),
http://dx.doi.org/10.1063/1.123461
[15] D. Fritsch, H. Schmidt, and M. Grundmann, Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN, Phys. Rev. B 67(23), 235205-1–13 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.235205
[16] M. Tiersten, Acoustic-mode scattering of holes, IBM J. Res. Develop. 5(April), 122–131 (1961),
http://dx.doi.org/10.1147/rd.52.0122
[17] F. Szmulowicz and F.L. Madarasz, Angular dependence of hole–acoustic-phonon transitions rates in silicon, Phys. Rev. B 26(4), 2101–2112 (1982),
http://dx.doi.org/10.1103/PhysRevB.26.2101