[PDF]
http://dx.doi.org/10.3952/lithjphys.45204
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 95–100 (2005)
MODELLING EFFICIENT NL-PML
BOUNDARY CONDITIONS FOR THE NONPARAXIAL BEAM PROPAGATION METHOD
R. Petruškevičius
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: raimisp@ktl.mii.lt
Received 31 January 2005
The nonlinear perfectly matched layer (NL-PML)
boundary conditions were successfully applied to the nonparaxial
beam propagation method. It is demonstrated that the NL-PML is
extremely effective in absorbing the outgoing spatial solitons
that impinge the boundary of computation domain for a wide angular
spectrum of wave propagation. Using of sufficiently smooth
conductivity profiles and termination of NL-PML media by
controlled transparent boundary conditions offer further
significant improvement in the accuracy of the numerical solutions
of the nonparaxial beam propagation method at the grazing angles.
Keywords: nonparaxial beam propagation, boundary conditions,
parametric spatial solitons, quasi-phase matching
PACS: 42.25.Bs, 42.65.Tg, 42.65.Yj
EFEKTYVIŲ NETIESINIŲ TOBULAI
SUDERINTŲ SLUOKSNIŲ KRAŠTINIŲ SĄLYGŲ MODELIAVIMAS NEGRETAAŠIAM
PLUOŠTO SKLIDIMO METODUI
R. Petruškevičius
Fizikos institutas, Vilnius, Lietuva
Netiesinės tobulai suderintų sluoksnių
kraštinės sąlygos sėkmingai pritaikytos negretaašiam pluošto
sklidimo metodui. Parodyta, kad netiesiniai tobulai suderinti
sluoksniai ypač veiksmingai sugeria erdvinius solitonus,
krintančius į skaičiavimo srities kraštą, esant plačiam kampiniam
bangų sklidimo spektrui. Naudojant pakankamai glotnius laidumo
profilius ir netiesinių tobulai suderintų sluoksnių užbaigimą
kontroliuojamomis skaidriomis kraštinėmis sąlygomis, galima
papildomai žymiai pagerinti skaitmeninių sprendinių tikslumą,
nagrinėjant negretaašių pluoštų sklidimą mažais kampais.
References / Nuorodos
[1] A. Taflove and S.C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method, 2nd ed. (Artech
House, Norwood, 2000)
[2] N.-N. Feng and W.-P. Huang, A field-based numerical method for
three-dimensional analysis of optical waveguide discontinuities,
IEEE J. Quantum Electron. 39, 1661–1665 (2003),
http://dx.doi.org/10.1109/JQE.2003.819555
[3] H.J.W.M. Hoekstra, On beam propagation methods for modelling in
integrated optics, Opt. Quantum Electron. 29, 157–171
(1997),
http://dx.doi.org/10.1023/A:1018549904885
[4] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert,
Numerical techniques for modelling guided-wave photonic devices,
IEEE J. Select. Top. Quantum Electron. 6, 150–162 (2000),
http://dx.doi.org/10.1109/2944.826883
[5] G.R. Hadley, Transparent boundary conditions for beam
propagation methods, Opt. Lett. 16, 624–626 (1991),
http://dx.doi.org/10.1364/OL.16.000624
[6] F. Ma, C.L. Xu, and W.P. Huang, Wide-angle full vectorial beam
propagation method, IEEE Proc. – Optoelectron. 143, 139–143
(1996),
http://dx.doi.org/10.1049/ip-opt:19960123
[7] J.P. Bérenger, A perfectly matched layer for the absorption of
electromagnetic waves, J. Comput. Phys. 114, 185–200 (1994),
http://dx.doi.org/10.1006/jcph.1994.1159
[8] C.M. Rappaport, Perfectly matched absorbing boundary conditions
based on anisotropic lossy mapping of space, IEEE Microwave Guided
Wave Lett. 5, 90–92 (1995),
http://dx.doi.org/10.1109/75.366463
[9] C. Vassallo and F. Collino, Highly efficient absorbing boundary
conditions for beam propagation method, J. Lightwave Technol. 14,
1570–1577 (1996),
http://dx.doi.org/10.1109/50.511688
[10] W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama, The perfectly
matched layer (PML) boundary condition for the beam propagation
method, IEEE Photon. Technol. Lett. 8, 649–651 (1996),
http://dx.doi.org/10.1109/68.491568
[11] R. Petruskevicius, G. Bellanca, and P. Bassi, Nonlinear PML
boundary conditions for nonparaxial BPM in χ(2)
materials, IEEE Photon. Technol. Lett. 10, 1434–1436 (1998),
http://dx.doi.org/10.1109/68.720285
[12] L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R.
Bosenberg, and J.W. Pierce, Quasi-phase-matched optical parametric
oscillators in bulk periodically poled LiNbO3, J. Opt.
Soc. Am. B 12, 2102–2116 (1995),
http://dx.doi.org/10.1364/JOSAB.12.002102
[13] R. Petruškevičius, G. Bellanca, and P. Bassi, BPM modelling of
three-wave interaction in periodically poled second-order nonlinear
materials, Lithuanian J. Phys. 38, 168–176 (1998)
[14] R. Petruskevicius, Modelling of nonparaxial propagation of
parametric spatial solitons, Proc. SPIE 4415, 231–236
(2001),
http://dx.doi.org/10.1117/12.425498
[15] P. Baldi, P. Aschieri, S. Nouh, M. de Micheli, D.B. Ostrowsky,
D. Delacourt, and M. Papuchon, Modelling and experimental
observation of parametric fluorescence in periodically poled lithium
niobate waveguides, IEEE J. Quantum Electron. 31, 997–1008
(1995),
http://dx.doi.org/10.1109/3.387035
[16] G.R. Hadley, Wide-angle beam propagation using Padé approximant
operators, Opt. Lett. 17, 1426–1428 (1992),
http://dx.doi.org/10.1364/OL.17.001426
[17] M.D. Feit and J.A. Fleck, Light propagation in graded-index
optical fibers, Appl. Opt. 17, 3990–3998 (1978),
http://dx.doi.org/10.1364/AO.17.003990
[18] G.I. Stegeman, D.J. Hagan, and L. Torner, χ(2)
cascading phenomena and their applications to all-optical signal
processing, mode-locking, pulse compression and solitons, Opt.
Quantum Electron. 28, 1692–1740 (1996),
http://dx.doi.org/10.1007/BF00698538