[PDF]    http://dx.doi.org/10.3952/lithjphys.45204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 95–100 (2005)


MODELLING EFFICIENT NL-PML BOUNDARY CONDITIONS FOR THE NONPARAXIAL BEAM PROPAGATION METHOD
R. Petruškevičius
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: raimisp@ktl.mii.lt

Received 31 January 2005

The nonlinear perfectly matched layer (NL-PML) boundary conditions were successfully applied to the nonparaxial beam propagation method. It is demonstrated that the NL-PML is extremely effective in absorbing the outgoing spatial solitons that impinge the boundary of computation domain for a wide angular spectrum of wave propagation. Using of sufficiently smooth conductivity profiles and termination of NL-PML media by controlled transparent boundary conditions offer further significant improvement in the accuracy of the numerical solutions of the nonparaxial beam propagation method at the grazing angles.
Keywords: nonparaxial beam propagation, boundary conditions, parametric spatial solitons, quasi-phase matching
PACS: 42.25.Bs, 42.65.Tg, 42.65.Yj


EFEKTYVIŲ NETIESINIŲ TOBULAI SUDERINTŲ SLUOKSNIŲ KRAŠTINIŲ SĄLYGŲ MODELIAVIMAS NEGRETAAŠIAM PLUOŠTO SKLIDIMO METODUI
R. Petruškevičius
Fizikos institutas, Vilnius, Lietuva

Netiesinės tobulai suderintų sluoksnių kraštinės sąlygos sėkmingai pritaikytos negretaašiam pluošto sklidimo metodui. Parodyta, kad netiesiniai tobulai suderinti sluoksniai ypač veiksmingai sugeria erdvinius solitonus, krintančius į skaičiavimo srities kraštą, esant plačiam kampiniam bangų sklidimo spektrui. Naudojant pakankamai glotnius laidumo profilius ir netiesinių tobulai suderintų sluoksnių užbaigimą kontroliuojamomis skaidriomis kraštinėmis sąlygomis, galima papildomai žymiai pagerinti skaitmeninių sprendinių tikslumą, nagrinėjant negretaašių pluoštų sklidimą mažais kampais.


References / Nuorodos


[1] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, 2000)
[2] N.-N. Feng and W.-P. Huang, A field-based numerical method for three-dimensional analysis of optical waveguide discontinuities, IEEE J. Quantum Electron. 39, 1661–1665 (2003),
http://dx.doi.org/10.1109/JQE.2003.819555
[3] H.J.W.M. Hoekstra, On beam propagation methods for modelling in integrated optics, Opt. Quantum Electron. 29, 157–171 (1997),
http://dx.doi.org/10.1023/A:1018549904885
[4] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, Numerical techniques for modelling guided-wave photonic devices, IEEE J. Select. Top. Quantum Electron. 6, 150–162 (2000),
http://dx.doi.org/10.1109/2944.826883
[5] G.R. Hadley, Transparent boundary conditions for beam propagation methods, Opt. Lett. 16, 624–626 (1991),
http://dx.doi.org/10.1364/OL.16.000624
[6] F. Ma, C.L. Xu, and W.P. Huang, Wide-angle full vectorial beam propagation method, IEEE Proc. – Optoelectron. 143, 139–143 (1996),
http://dx.doi.org/10.1049/ip-opt:19960123
[7] J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 185–200 (1994),
http://dx.doi.org/10.1006/jcph.1994.1159
[8] C.M. Rappaport, Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space, IEEE Microwave Guided Wave Lett. 5, 90–92 (1995),
http://dx.doi.org/10.1109/75.366463
[9] C. Vassallo and F. Collino, Highly efficient absorbing boundary conditions for beam propagation method, J. Lightwave Technol. 14, 1570–1577 (1996),
http://dx.doi.org/10.1109/50.511688
[10] W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama, The perfectly matched layer (PML) boundary condition for the beam propagation method, IEEE Photon. Technol. Lett. 8, 649–651 (1996),
http://dx.doi.org/10.1109/68.491568
[11] R. Petruskevicius, G. Bellanca, and P. Bassi, Nonlinear PML boundary conditions for nonparaxial BPM in χ(2) materials, IEEE Photon. Technol. Lett. 10, 1434–1436 (1998),
http://dx.doi.org/10.1109/68.720285
[12] L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B 12, 2102–2116 (1995),
http://dx.doi.org/10.1364/JOSAB.12.002102
[13] R. Petruškevičius, G. Bellanca, and P. Bassi, BPM modelling of three-wave interaction in periodically poled second-order nonlinear materials, Lithuanian J. Phys. 38, 168–176 (1998)
[14] R. Petruskevicius, Modelling of nonparaxial propagation of parametric spatial solitons, Proc. SPIE 4415, 231–236 (2001),
http://dx.doi.org/10.1117/12.425498
[15] P. Baldi, P. Aschieri, S. Nouh, M. de Micheli, D.B. Ostrowsky, D. Delacourt, and M. Papuchon, Modelling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides, IEEE J. Quantum Electron. 31, 997–1008 (1995),
http://dx.doi.org/10.1109/3.387035
[16] G.R. Hadley, Wide-angle beam propagation using Padé approximant operators, Opt. Lett. 17, 1426–1428 (1992),
http://dx.doi.org/10.1364/OL.17.001426
[17] M.D. Feit and J.A. Fleck, Light propagation in graded-index optical fibers, Appl. Opt. 17, 3990–3998 (1978),
http://dx.doi.org/10.1364/AO.17.003990
[18] G.I. Stegeman, D.J. Hagan, and L. Torner, χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons, Opt. Quantum Electron. 28, 1692–1740 (1996),
http://dx.doi.org/10.1007/BF00698538