[PDF]
http://dx.doi.org/10.3952/lithjphys.45205
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 125–131 (2005)
SIMULATION OF SILICON ETCHING IN
CF2Cl2 PLASMA
R. Knizikevičius
Department of Physics, Kaunas University of Technology, K.
Donelaičio 73, LT-44029 Kaunas, Lithuania
E-mail: rimantas.knizikevicius@ktu.lt
Received 7 March 2005
The reactive ion etching of silicon in CF2Cl2
plasma is considered. The profiles of etched trenches are
calculated as the functions of mask dimensions, flux of CF2
radicals, and parameters of ion bombardment. The processes of
adsorption, activation, chemical reactions, relaxation,
desorption, and sputtering are included in the proposed model.
During one-dimensional etching, F/C ratio of adsorbed layer
decreases with the intensification of reaction of CF2
radicals with Si atoms and of the sputtering of polymer and SiC
molecules. The values of frequency probabilities, found by
extrapolation from the experimentally measured one-dimensional
silicon etching rate in CF2Cl22 plasma, are
used for the calculation of the real dimensions of etched
trenches. During two-dimensional etching, F/C ratio in the trench
bottom depends on the fluxes of neutrals and ions. F/C ratio at
the sidewalls is equal to 2. Special attention is given to the
etching anisotropy and lateral etching. The influence of the ratio
of concentration of CF2 radicals and concentration of
CF2+ ions in the plasma on an etched trench
profile is considered. The conditions under which anisotropic
etching prevails are found.
Keywords: CF2Cl2 plasma, silicon,
reactive ion etching
PACS: 52.77.Bn, 82.35.Gh, 82.65.+r
SILICIO ĖSDINIMO CF2Cl2
PLAZMOJE MODELIAVIMAS
R. Knizikevičius
Kauno technologijos universitetas, Kaunas, Lietuva
Išnagrinėtas reaktyvus joninis silicio
ėsdinimas CF2Cl2 plazmoje. Išėsdintų kanalų
profiliai apskaičiuoti kaip kaukės matmenų, CF2
radikalų srauto ir joninio apšaudymo parametrų funkcija.
Pasiūlytame modelyje atsižvelgta į įgerties, aktyvavimo, cheminių
reakcijų, relaksacijos, atvirkštinės gerties ir dulkėjimo vyksmus.
Vienmačio ėsdinimo metu įgerto sluoksnio F/C santykis mažėja,
intensyvėjant CF2 radikalų reakcijai su Si atomais,
polimero ir SiC molekulių dulkėjimui. Dažninių tikimybių vertės,
rastos ekstrapoliuojant eksperimentiškai išmatuotas silicio
vienmačio ėsdinimo spartas CF2Cl2 plazmoje,
panaudotos išėsdintų kanalų realiems matmenims skaičiuoti.
Dvimačio ėsdinimo metu F/C santykis kanalo dugne priklauso nuo
neutralių ir joninių srautų. F/C santykis šoninėje sienelėje lygus
2. Atkreiptas dėmesys į ėsdinimo anizotropiją ir šoninį ėsdinimą.
Tirta CF2 radikalų ir CF+2 jonų
koncentracijų santykio plazmoje įtaka išėsdinto kanalo profiliui.
Rasta, kokiomis sąlygomis vyrauja anizotropinis ėsdinimas.
References / Nuorodos
[1] G. Wöhl, M. Matthes, and A. Weisheit, Reactive ion etching of
deep trenches in silicon with CF2Cl2 and O2,
Vacuum 38(11), 1011–1014 (1988),
http://dx.doi.org/10.1016/0042-207X(88)90565-9
[2] W.W. Stoffels, E. Stoffels, M. Haverlag, G.M.W. Kroesen, and
F.J. de Hoog, The chemistry of a CCl2F2 radio
frequency discharge, J. Vac. Sci. Technol. A 13(4),
2058–2066 (1995),
http://dx.doi.org/10.1116/1.579652
[3] S. Arai, K. Tsujimoto, and S. Tachi, Deposition in dry-etching
gas plasmas, Jpn. J. Appl. Phys. 31(6B), 2011–2019 (1992),
http://dx.doi.org/10.1143/JJAP.31.2011
[4] M. Inayoshi, M. Ito, M. Hori, T. Goto, and M. Hiramatsu, Surface
reaction of CF2 radicals for fluorocarbon film formation
in SiO2/Si selective etching process, J. Vac. Sci.
Technol. A 16(1), 233–238 (1998),
http://dx.doi.org/10.1116/1.580977
[5] R. Knizikevičius, Enhancement of silicon etching rate in XeF2
ambient in the presence of activated polymer, Appl. Surf. Sci. 228(1–4),
227–232 (2004),
http://dx.doi.org/10.1016/j.apsusc.2004.01.016
[6] Ž. Rutkūnienė and A. Grigonis, Formation of polymeric layers
using halogen-carbon plasmas, Vacuum 68(3), 239–244 (2003),
http://dx.doi.org/10.1016/S0042-207X(02)00451-7
[7] Ž. Rutkūnienė and A. Grigonis, Analysis of bonds influencing
etching of silicon by CF2Cl2 plasma,
Lithuanian J. Phys. 42(1), 41–47 (2002)
[8] M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, and
F.J. de Hoog, Measurements of radical densities in radio-frequency
fluorocarbon plasmas using infrared absorption spectroscopy, J. Vac.
Sci. Technol. A 12(6), 3102–3108 (1994),
http://dx.doi.org/10.1116/1.578943
[9] D. Zhang and M.J. Kushner, Investigations of surface reactions
during C2F6 plasma etching of SiO2
with equipment and feature scale models, J. Vac. Sci. Technol. A 19(2),
524–538 (2001),
http://dx.doi.org/10.1116/1.1349728
[10] K. Ono and M. Tuda, Profile evolution during cold plasma beam
etching of silicon, Jpn. J. Appl. Phys. 36(7B), 4854–4865
(1997),
http://dx.doi.org/10.1143/JJAP.36.4854
[11] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma
Discharges and Materials Processing (Wiley, New York, 1994)
[12] R. Knizikevičius, Influence of reemission of neutrals on the
shape of etched grooves, Vacuum 72(4), 481–484 (2004),
http://dx.doi.org/10.1016/j.vacuum.2003.10.011
[13] V.N. Popov, Carbon nanotubes: Properties and application,
Mater. Sci. Eng. R 43(3), 61–102 (2004),
http://dx.doi.org/10.1016/j.mser.2003.10.001