[PDF]    http://dx.doi.org/10.3952/lithjphys.45206

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 115–123 (2005)


SINGLET MOLECULAR OXYGEN PHOTOSENSITIZATION UPON TWO-PHOTON EXCITATION OF PORPHYRIN IN AQUEOUS SOLUTION
M. Kruka,b, A. Karotkib,c, M. Drobizhevb, and A. Rebaneb
aInstitute of Molecular and Atomic Physics of National Academy of Sciences, F. Skaryna Ave. 70, 220070 Minsk, Republic of Belarus
E-mail: kruk@imaph.bas-net.by
bMontana State University, Physics Department, Bozeman, MT-59717-3840, USA
cUniversity Health Network, Ontario Cancer Institute, Department of Medical Biophysics, Toronto, ON M5G 2M9, Canada

Received 28 April 2005

The high photodynamic activity of the water-soluble porphyrins is well documented. However, use of the water-soluble porphyrins as the photosensitizers in photodynamic therapy (PDT) is of limited usefulness because of the insufficient absorbance in the red wavelength region, where the tissues are transparent. The process by which these molecules can overcome these restrictions is the two-photon excitation (TPE). Up until now, this process is considered as being too inefficient and having no practical interest. In this study the two-photon absorptivity and singlet oxygen photosensitization by 5, 10, 15, 20-tetrakis-(4-N-methylpyridyl)-21H, 23H-porphin in aqueous solution have been examined directly. Two-photon absorption cross-section σTPA shows the value ranging from 60 up to 180 GM (Göppert-Mayer units), when tuning the excitation wavelength from 800 to 730 nm. This absorbance at the blue side of the one-photon Soret band (B-band) is found to be due to two-photon allowed excitation into the state of even parity (i. e. gg transition). TPE into Q-states is parity forbidden (gu transitions), and σTPA does not exceed 6 GM over 1100–1400 nm excitation wavelength range. TPE of porphyrin at 780 nm in air-saturated aqueous (D2O) solution results in efficient singlet molecular oxygen (1Δg) photosensitization, which is detected by its 1Δg3Σg luminescence. Our findings prove the applicability of the TPE in photodynamic therapy and allow determining the requirements to the two-photon absorptivity of photosensitizer to be used.
Keywords: water-soluble porphyrins, two-photon absorption, photosensitization, singlet oxygen, photodynamic therapy
PACS: 42.65.-k, 33.W2


SINGULETINIO MOLEKULINIO DEGUONIES FOTOJAUTRINIMAS, DVIFOTONIŠKAI ŽADINANT PORFIRINĄ VANDENS TIRPALE
M. Kruka,b, A. Karotkib,c, M. Drobizhevb, A. Rebaneb
aNacionalinės mokslų akademijos Molekulinės ir atominės fizikos institutas, Minskas, Baltarusija
bMontanos valstijos universitetas, Bozemanas, JAV
cOntario vėžio institutas, Torontas, Kanada

Gerai žinomas vandenyje tirpaus porfirino fotodinaminis aktyvumas. Tačiau porfirinų fotojautrinantį panaudojimą fotodinaminėje terapijoje riboja nepakankama sugertis raudonajame spektro ruože, kuriame kūno audiniai nesugeria spinduliuotės. Šių molekulių dvifotonis sužadinimas (DFS) padeda išvengti šio apribojimo. Lig šiol DFS buvo laikomas neefektyviu ir neturinčiu praktinės vertės. Šiame darbe dvifotonė savitoji sugertis ir singuletinio deguonies fotojautrinimas 5,10,15,20-tetrakis-(4-Nmetilpiridil)-21H,23H-porfirinu vandens tirpale buvo tiesiogiai patikrinti. Dvifotonės sugerties skerspjūvio σDFS didumas kinta nuo 60 ligi 180 GM, derinant sužadinimo bangos ilgį nuo 800 iki 730 nm. Atrasta, kad mėlynajame Soret’o juostos (B juosta) krašte ši sugertis pasireiškia dėl dvifotonės leistino šuolio sugerties į lyginio lygiškumo būseną (gg šuolis). DFS į Q būsenas yra uždraustas pagal lygiškumą (gu šuolis) ir σDFS didumas neviršija 6 GM 1100–1400 nm spektro ruože. Porfirino DFS ties 780 nm oro prisotintame sunkiojo vandens tirpale efektyviai jautrina singuletinį molekulinį deguonį (1Δg), kuris detektuojamas per 1Δg3Σg liuminescenciją. Mūsų išaiškinimais parodytas dvifotonio sužadinimo tinkamumas fotodinaminei terapijai ir galimybė nustatyti reikalavimus panaudojamos fotojautrinančios medžiagos dvifotonei savitajai sugerčiai.


References / Nuorodos


[1] J.C. Howard, E.H. Mark, and N. Datta-Gupta, Interaction of DNA with a porphyrin ligand: Evidence for intercalation, Nucleic Acids Res. 6(9), 3093–3120 (1979),
http://dx.doi.org/10.1093/nar/6.9.3093
[2] R.J. Fiel, N. Datta-Gupta, E.H. Mark, and J.C. Howard, Induction of DNA damage by porphyrin photosensitizers, Cancer Res. 41, 3543–3545 (1981)
[3] J.-B. Verlhac, A. Gaudemer, and I. Kraljic, Water-soluble porphyrins and metalloporphyrins as photosensitizers in aerated aqueous solutions. I. Detection and determination of quantum yield of formation of singlet oxygen, Nouv. J. Chim. 8(6), 401–406 (1984)
[4] D. Praseuth, A. Gaudemer, J.-B. Verlhac, I. Kraljic, I. Sissoeff, and E. Guie, Photocleavage of DNA in the presence of synthetic water-soluble porphyrins, Photochem. Photobiol. 44(6), 717–724 (1986),
http://dx.doi.org/10.1111/j.1751-1097.1986.tb05529.x
[5] V.S. Chirvony, V.A. Galievsky, N.N. Kruk, B.M. Dzhagarov, and P.-Y. Turpin, Photophysics of the cationic 5, 10, 15, 20-tetrakis(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dG-dC)]2 and [poly(dA-dT)]2: On a possible charge transfer process between guanine and porphyrin in its excited singlet state, J. Photochem. Photobiol. B 40(2), 154–162 (1997),
http://dx.doi.org/10.1016/S1011-1344(97)00043-2
[6] N.N. Kruk, B.M. Dzhagarov, V.A. Galievsky, V.S. Chirvony, and P.-Y. Turpin, Photophysics of the cationic 5, 10, 15, 20-tetrakis(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dG-dC)]]2 and [poly(dA-dT)]]2: Interaction with molecular oxygen studied by porphyrin triplettriplet absorption and singlet oxygen luminescence, J. Photoche2m. Photobiol. B 42(3), 181–190 (1998),
http://dx.doi.org/10.1016/S1011-1344(98)00068-2
[7] N.N. Kruk, S.I. Shishporenok, A.A. Korotky, V.A. Galievsky, V.S. Chirvony, and P.-Y. Turpin, Binding of the cationic 5, 10, 15, 20-tetrakis(4-Nmethylpyridyl) porphyrin bound at 5'CG3' and 5'GC3' sequences of hexadeoxyribonucleotides: Triplettriplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies, J. Photochem. Photobiol. B 45(1), 67–74 (1998),
http://dx.doi.org/10.1016/S1011-1344(98)00162-6
[8] M. Merchat, J.D. Spikes, G. Bertoloni, and G. Jori, Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, J. Photochem. Photobiol. B, 35(2), 149–157 (1996),
http://dx.doi.org/10.1016/S1011-1344(96)07321-6
[9] N.N. Kruk and A.A. Korotkii, Photophysical properties and photoreduction of 5, 10, 15, 20-tetrakis-(4-N-methylpyridyl) porphyrin in formamide, J. Appl. Spectr. (translated from Russian) 67(6), 966–971 (2000),
http://dx.doi.org/10.1023/A:1004164119731
[10] San Wan, J. Parrish, R. Rox Anderson, and M. Madden, Transmittance of nonionizing radiation in human tissues, Photochem. Photobiol. 34(6), 679–681 (1981),
http://dx.doi.org/10.1111/j.1751-1097.1981.tb09424.x
[11] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev. 24, 19–33 (1995),
http://dx.doi.org/10.1039/cs9952400019
[12] R. Bonnett, Chemical Aspects of Photodynamic Therapy (Gordon and Breach, Amsterdam, 2000),
http://dx.doi.org/10.1201/9781482296952
[13] W.G. Fisher, W.P. Partridge, Jr., C. Dees, and E.A. Wachter, Simultaneous two-photon activation of type-I photodynamic therapy agents, Photochem. Photobiol. 66(2), 141–155 (1997),
http://dx.doi.org/10.1111/j.1751-1097.1997.tb08636.x
[14] D. Leupold and I.E. Kochevar, Multiphoton photochemistry in biological systems. Introduction, Photochem. Photobiol. 66(5), 562–565 (1997),
http://dx.doi.org/10.1111/j.1751-1097.1997.tb03189.x
[15] E.A. Wachter, W.P. Partridge, W.G. Fisher, H.C. Dees, and M.G. Petersen, Simultaneous two-photon excitation of photodynamic therapy agents, Proc. SPIE – Int. Soc. Opt. Eng. 3269, 68–74 (1998),
http://dx.doi.org/10.1117/12.312332
[16] M. Göppert-Mayer, Elementartakte mit zwei Quantensprüngen, Ann. Phys. 9, 273–294 (1931),
http://dx.doi.org/10.1002/andp.19314010303
[17] L. Kelbauskas and W. Dietel, Internalization of aggregated photosensitizers by tumor cells: Subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitation, Photochem. Photobiol. 76(6), 686–694 (2002),
http://dx.doi.org/10.1562/0031-8655(2002)076<0686:IOAPBT>2.0.CO;2
[18] C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, and W.W. Webb, Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996),
http://dx.doi.org/10.1073/pnas.93.20.10763
[19] N.N. Vsevolodov, L.P. Kostikov, L.P. Kayushin, and V.I. Gorbatenkov, Two-photon absorption of laser emission by chlorophyll a and several organic dyes, Biofizika 18, 755–757 (1973) [in Russian]
[20] R.L. Goyan and D.T. Gramb, Near-infrared two-photon excitation of protoporphyrin IX: Photodynamic and photoproduct generation, Photochem. Photobiol. 72(6), 821–827 (2000),
http://dx.doi.org/10.1562/0031-8655(2000)0720821NITPEO2.0.CO2
[21] A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C.W. Spangler, Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption, IEEE J. Sel. Topics Quantum Electron. 7(6), 971–975 (2001),
http://dx.doi.org/10.1109/2944.983301
[22] M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, Resonance enhancement of two-photon absorption in porphyrins, Chem. Phys. Lett. 355(1–2), 175–182 (2002),
http://dx.doi.org/10.1016/S0009-2614(02)00206-3
[23] M. Drobizhev, A. Karotki, M. Kruk, N.Zh. Mamardashvili, and A. Rebane, Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution, Chem. Phys. Lett. 361(5–6), 504–512 (2002),
http://dx.doi.org/10.1016/S0009-2614(02)00999-5
[24] A. Karotki, M. Drobizhev, M. Kruk, C.W. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, Enhancement of two-photon absorption in tetrapyrrolic compounds, J. Opt. Soc. Am. B 20(2), 321–332 (2003),
http://dx.doi.org/10.1364/JOSAB.20.000321
[25] M. Kruk, A. Karotki, M. Drobizhev, and A. Rebane, First observation of two-photon photosensitization of singlet molecular oxygen by porphyrin in aqueous solution, in: Digest of LALS-IX Conference (Vilnius, Lithuania, July 2002), 92 (2002)
[26] A. Karotki, M. Drobizhev, M. Kruk, A. Rebane, E. Nickel, and C.W. Spangler, Strong two-photon absorption and singlet oxygen photogeneration in near-IR with new porphyrin molecule, Proc. SPIE – Int. Soc. Opt. Eng. 4612, 143–151 (2002),
http://dx.doi.org/10.1117/12.469344
[27] V.A. Kuz'mitskii, Excited even-symmetry states of metallocomplexes of porphin and its derivatives, J. Appl. Spectrosc. (translated from Russian) 68(5), 758–765 (2001),
http://dx.doi.org/10.1023/A:1013229530258
[28] R.F. Pasternack, E.J. Gibbs, and J.J. Villafranca, Interaction of porphyrins with nucleic acids, Biochemistry 22(10), 2406–2414 (1983),
http://dx.doi.org/10.1021/bi00279a016
[29] M.D. Galanin and Z.A. Chizhikova, Effective TPA cross-sections in organic molecules, Pis'ma Zh. Eksp. Teor. Fiz. [JETP Letters] 4(2), 41–43 (1966) [in Russian]
[30] F. Wilkinson, W.P. Helman, and A.B. Ross, Rate constant for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data 24(2), 663–1021 (1995),
http://dx.doi.org/10.1063/1.555965
[31] F.J. Vergeldt, R.B.M. Koehorst, A. Van Hoek, and T. Schaafsma, Intramolecular interactions in the ground and excited state of tetrakis(N-methylpyridyl) porphyrins, J. Phys. Chem. 99(13), 4397–4405 (1995),
http://dx.doi.org/10.1021/j100013a007
[32] N.N. Kruk, O.P. Parkhots, and N.V. Ivashin, Spectral manifestation of anion-cation interactions of water-soluble porphyrins, J. Appl. Spectrosc. (translated from Russian) 68(6), 924–929 (2001),
http://dx.doi.org/10.1023/A:1014382527864
[33] T. Gensch, C. Viappiani, and S.E. Braslavsky, Structural volume changes upon photoexcitation of porphyrins: Role of the nitrogen–water interactions, J. Am. Chem. Soc. 121(45), 10573–10582 (1999),
http://dx.doi.org/10.1021/ja9913885
[34] A.A. Krasnovsky, Jr., S.Yu. Egorov, O.V. Nazarova, E.V. Yartsev, and G.V. Ponomarev, Photogeneration of singlet molecular oxygen by water-soluble porphyrins, Biofizika 32(6), 982–993 (1982) [in Russian]
[35] N.G. Angeli, M. Gabriela Lagorio, E.A. San Roman, and L.E. Dicello, Meso-substituted cationic porphyrins of biological interest. Photophysical and physicochemical properties in solution and bound to liposomes, Photochem. Photobiol. 72(1), 49–56 (2000),
http://dx.doi.org/10.1562/0031-8655(2000)072<0049:MSCPOB>2.0.CO;2
[36] R. Schmidt, Solvent shift of the 1Δg3Σg phosphorescence of O2, J. Phys. Chem. 100(20), 8049–8052 (1996),
http://dx.doi.org/10.1021/jp960464c
[37] R. Zipfel, R.M. Williams, and W.W. Webb, Nonlinear magic: Multiphoton microscopy in the bioscience, Nature Biotechnology 21(11), 1369–1377 (2003),
http://dx.doi.org/10.1038/nbt899
[38] R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003)