[PDF]
http://dx.doi.org/10.3952/lithjphys.45206
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 115–123 (2005)
SINGLET MOLECULAR OXYGEN
PHOTOSENSITIZATION UPON TWO-PHOTON EXCITATION OF PORPHYRIN IN
AQUEOUS SOLUTION
M. Kruka,b, A. Karotkib,c, M. Drobizhevb,
and A. Rebaneb
aInstitute of Molecular and Atomic Physics of
National Academy of Sciences, F. Skaryna Ave. 70, 220070 Minsk,
Republic of Belarus
E-mail: kruk@imaph.bas-net.by
bMontana State University, Physics Department,
Bozeman, MT-59717-3840, USA
cUniversity Health Network, Ontario Cancer
Institute, Department of Medical Biophysics, Toronto, ON M5G
2M9, Canada
Received 28 April 2005
The high photodynamic activity of the
water-soluble porphyrins is well documented. However, use of the
water-soluble porphyrins as the photosensitizers in photodynamic
therapy (PDT) is of limited usefulness because of the insufficient
absorbance in the red wavelength region, where the tissues are
transparent. The process by which these molecules can overcome
these restrictions is the two-photon excitation (TPE). Up until
now, this process is considered as being too inefficient and
having no practical interest. In this study the two-photon
absorptivity and singlet oxygen photosensitization by 5, 10, 15,
20-tetrakis-(4-N-methylpyridyl)-21H, 23H-porphin in aqueous
solution have been examined directly. Two-photon absorption
cross-section σTPA shows the value ranging from
60 up to 180 GM (Göppert-Mayer units), when tuning the excitation
wavelength from 800 to 730 nm. This absorbance at the blue side of
the one-photon Soret band (B-band) is found to be due to
two-photon allowed excitation into the state of even parity (i. e.
g → g transition). TPE into Q-states is parity
forbidden (g → u transitions), and σTPA
does not exceed 6 GM over 1100–1400 nm excitation wavelength
range. TPE of porphyrin at 780 nm in air-saturated aqueous (D2O)
solution results in efficient singlet molecular oxygen (1Δg)
photosensitization, which is detected by its 1Δg
→ 3Σ−g luminescence. Our
findings prove the applicability of the TPE in photodynamic
therapy and allow determining the requirements to the two-photon
absorptivity of photosensitizer to be used.
Keywords: water-soluble porphyrins, two-photon absorption,
photosensitization, singlet oxygen, photodynamic therapy
PACS: 42.65.-k, 33.W2
SINGULETINIO MOLEKULINIO
DEGUONIES FOTOJAUTRINIMAS, DVIFOTONIŠKAI ŽADINANT PORFIRINĄ
VANDENS TIRPALE
M. Kruka,b, A. Karotkib,c, M. Drobizhevb,
A. Rebaneb
aNacionalinės mokslų akademijos Molekulinės ir
atominės fizikos institutas, Minskas, Baltarusija
bMontanos valstijos universitetas, Bozemanas,
JAV
cOntario vėžio institutas, Torontas, Kanada
Gerai žinomas vandenyje tirpaus porfirino
fotodinaminis aktyvumas. Tačiau porfirinų fotojautrinantį
panaudojimą fotodinaminėje terapijoje riboja nepakankama sugertis
raudonajame spektro ruože, kuriame kūno audiniai nesugeria
spinduliuotės. Šių molekulių dvifotonis sužadinimas (DFS) padeda
išvengti šio apribojimo. Lig šiol DFS buvo laikomas neefektyviu ir
neturinčiu praktinės vertės. Šiame darbe dvifotonė savitoji
sugertis ir singuletinio deguonies fotojautrinimas
5,10,15,20-tetrakis-(4-Nmetilpiridil)-21H,23H-porfirinu vandens
tirpale buvo tiesiogiai patikrinti. Dvifotonės sugerties
skerspjūvio σDFS didumas kinta nuo 60 ligi 180
GM, derinant sužadinimo bangos ilgį nuo 800 iki 730 nm. Atrasta,
kad mėlynajame Soret’o juostos (B juosta) krašte ši sugertis
pasireiškia dėl dvifotonės leistino šuolio sugerties į lyginio
lygiškumo būseną (g → g šuolis). DFS į Q būsenas
yra uždraustas pagal lygiškumą (g → u šuolis) ir σDFS
didumas neviršija 6 GM 1100–1400 nm spektro ruože. Porfirino DFS
ties 780 nm oro prisotintame sunkiojo vandens tirpale efektyviai
jautrina singuletinį molekulinį deguonį (1Δg),
kuris detektuojamas per 1Δg → 3Σg
liuminescenciją. Mūsų išaiškinimais parodytas dvifotonio
sužadinimo tinkamumas fotodinaminei terapijai ir galimybė
nustatyti reikalavimus panaudojamos fotojautrinančios medžiagos
dvifotonei savitajai sugerčiai.
References / Nuorodos
[1] J.C. Howard, E.H. Mark, and N. Datta-Gupta, Interaction of DNA
with a porphyrin ligand: Evidence for intercalation, Nucleic Acids
Res. 6(9), 3093–3120 (1979),
http://dx.doi.org/10.1093/nar/6.9.3093
[2] R.J. Fiel, N. Datta-Gupta, E.H. Mark, and J.C. Howard, Induction
of DNA damage by porphyrin photosensitizers, Cancer Res. 41,
3543–3545 (1981)
[3] J.-B. Verlhac, A. Gaudemer, and I. Kraljic, Water-soluble
porphyrins and metalloporphyrins as photosensitizers in aerated
aqueous solutions. I. Detection and determination of quantum yield
of formation of singlet oxygen, Nouv. J. Chim. 8(6), 401–406
(1984)
[4] D. Praseuth, A. Gaudemer, J.-B. Verlhac, I. Kraljic, I.
Sissoeff, and E. Guie, Photocleavage of DNA in the presence of
synthetic water-soluble porphyrins, Photochem. Photobiol. 44(6),
717–724 (1986),
http://dx.doi.org/10.1111/j.1751-1097.1986.tb05529.x
[5] V.S. Chirvony, V.A. Galievsky, N.N. Kruk, B.M. Dzhagarov, and
P.-Y. Turpin, Photophysics of the cationic 5, 10, 15,
20-tetrakis(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dG-dC)]2
and [poly(dA-dT)]2: On a possible charge transfer process
between guanine and porphyrin in its excited singlet state, J.
Photochem. Photobiol. B 40(2), 154–162 (1997),
http://dx.doi.org/10.1016/S1011-1344(97)00043-2
[6] N.N. Kruk, B.M. Dzhagarov, V.A. Galievsky, V.S. Chirvony, and
P.-Y. Turpin, Photophysics of the cationic 5, 10, 15,
20-tetrakis(4-N-methylpyridyl) porphyrin bound to DNA,
[poly(dG-dC)]]2 and [poly(dA-dT)]]2: Interaction with
molecular oxygen studied by porphyrin triplet–triplet
absorption and singlet oxygen luminescence, J. Photoche2m.
Photobiol. B 42(3), 181–190 (1998),
http://dx.doi.org/10.1016/S1011-1344(98)00068-2
[7] N.N. Kruk, S.I. Shishporenok, A.A. Korotky, V.A. Galievsky, V.S.
Chirvony, and P.-Y. Turpin, Binding of the cationic 5, 10, 15,
20-tetrakis(4-Nmethylpyridyl) porphyrin bound at 5'CG3' and 5'GC3'
sequences of hexadeoxyribonucleotides: Triplet–triplet
transient absorption, steady-state and time-resolved fluorescence
and resonance Raman studies, J. Photochem. Photobiol. B 45(1),
67–74 (1998),
http://dx.doi.org/10.1016/S1011-1344(98)00162-6
[8] M. Merchat, J.D. Spikes, G. Bertoloni, and G. Jori, Studies on
the mechanism of bacteria photosensitization by meso-substituted
cationic porphyrins, J. Photochem. Photobiol. B, 35(2),
149–157 (1996),
http://dx.doi.org/10.1016/S1011-1344(96)07321-6
[9] N.N. Kruk and A.A. Korotkii, Photophysical properties and
photoreduction of 5, 10, 15, 20-tetrakis-(4-N-methylpyridyl)
porphyrin in formamide, J. Appl. Spectr. (translated from Russian) 67(6),
966–971 (2000),
http://dx.doi.org/10.1023/A:1004164119731
[10] San Wan, J. Parrish, R. Rox Anderson, and M. Madden,
Transmittance of nonionizing radiation in human tissues, Photochem.
Photobiol. 34(6), 679–681 (1981),
http://dx.doi.org/10.1111/j.1751-1097.1981.tb09424.x
[11] R. Bonnett, Photosensitizers of the porphyrin and
phthalocyanine series for photodynamic therapy, Chem. Soc. Rev. 24,
19–33 (1995),
http://dx.doi.org/10.1039/cs9952400019
[12] R. Bonnett, Chemical Aspects of Photodynamic Therapy
(Gordon and Breach, Amsterdam, 2000),
http://dx.doi.org/10.1201/9781482296952
[13] W.G. Fisher, W.P. Partridge, Jr., C. Dees, and E.A. Wachter,
Simultaneous two-photon activation of type-I photodynamic therapy
agents, Photochem. Photobiol. 66(2), 141–155 (1997),
http://dx.doi.org/10.1111/j.1751-1097.1997.tb08636.x
[14] D. Leupold and I.E. Kochevar, Multiphoton photochemistry in
biological systems. Introduction, Photochem. Photobiol. 66(5),
562–565 (1997),
http://dx.doi.org/10.1111/j.1751-1097.1997.tb03189.x
[15] E.A. Wachter, W.P. Partridge, W.G. Fisher, H.C. Dees, and M.G.
Petersen, Simultaneous two-photon excitation of photodynamic therapy
agents, Proc. SPIE – Int. Soc. Opt. Eng. 3269, 68–74 (1998),
http://dx.doi.org/10.1117/12.312332
[16] M. Göppert-Mayer, Elementartakte mit zwei Quantensprüngen, Ann.
Phys. 9, 273–294 (1931),
http://dx.doi.org/10.1002/andp.19314010303
[17] L. Kelbauskas and W. Dietel, Internalization of aggregated
photosensitizers by tumor cells: Subcellular time-resolved
fluorescence spectroscopy on derivatives of pyropheophorbide-a
ethers and chlorin e6 under femtosecond one- and two-photon
excitation, Photochem. Photobiol. 76(6), 686–694 (2002),
http://dx.doi.org/10.1562/0031-8655(2002)076<0686:IOAPBT>2.0.CO;2
[18] C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, and W.W. Webb,
Multiphoton fluorescence excitation: New spectral windows for
biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93,
10763–10768 (1996),
http://dx.doi.org/10.1073/pnas.93.20.10763
[19] N.N. Vsevolodov, L.P. Kostikov, L.P. Kayushin, and V.I.
Gorbatenkov, Two-photon absorption of laser emission by chlorophyll
a and several organic dyes, Biofizika 18, 755–757 (1973) [in
Russian]
[20] R.L. Goyan and D.T. Gramb, Near-infrared two-photon excitation
of protoporphyrin IX: Photodynamic and photoproduct generation,
Photochem. Photobiol. 72(6), 821–827 (2000),
http://dx.doi.org/10.1562/0031-8655(2000)0720821NITPEO2.0.CO2
[21] A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and
C.W. Spangler, Efficient singlet oxygen generation upon two-photon
excitation of new porphyrin with enhanced nonlinear absorption, IEEE
J. Sel. Topics Quantum Electron. 7(6), 971–975 (2001),
http://dx.doi.org/10.1109/2944.983301
[22] M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, Resonance
enhancement of two-photon absorption in porphyrins, Chem. Phys.
Lett. 355(1–2), 175–182 (2002),
http://dx.doi.org/10.1016/S0009-2614(02)00206-3
[23] M. Drobizhev, A. Karotki, M. Kruk, N.Zh. Mamardashvili, and A.
Rebane, Drastic enhancement of two-photon absorption in porphyrins
associated with symmetrical electron-accepting substitution, Chem.
Phys. Lett. 361(5–6), 504–512 (2002),
http://dx.doi.org/10.1016/S0009-2614(02)00999-5
[24] A. Karotki, M. Drobizhev, M. Kruk, C.W. Spangler, E. Nickel, N.
Mamardashvili, and A. Rebane, Enhancement of two-photon absorption
in tetrapyrrolic compounds, J. Opt. Soc. Am. B 20(2),
321–332 (2003),
http://dx.doi.org/10.1364/JOSAB.20.000321
[25] M. Kruk, A. Karotki, M. Drobizhev, and A. Rebane, First
observation of two-photon photosensitization of singlet molecular
oxygen by porphyrin in aqueous solution, in: Digest of LALS-IX
Conference (Vilnius, Lithuania, July 2002), 92 (2002)
[26] A. Karotki, M. Drobizhev, M. Kruk, A. Rebane, E. Nickel, and
C.W. Spangler, Strong two-photon absorption and singlet oxygen
photogeneration in near-IR with new porphyrin molecule, Proc. SPIE –
Int. Soc. Opt. Eng. 4612, 143–151 (2002),
http://dx.doi.org/10.1117/12.469344
[27] V.A. Kuz'mitskii, Excited even-symmetry states of
metallocomplexes of porphin and its derivatives, J. Appl. Spectrosc.
(translated from Russian) 68(5), 758–765 (2001),
http://dx.doi.org/10.1023/A:1013229530258
[28] R.F. Pasternack, E.J. Gibbs, and J.J. Villafranca, Interaction
of porphyrins with nucleic acids, Biochemistry 22(10),
2406–2414 (1983),
http://dx.doi.org/10.1021/bi00279a016
[29] M.D. Galanin and Z.A. Chizhikova, Effective TPA cross-sections
in organic molecules, Pis'ma Zh. Eksp. Teor. Fiz. [JETP Letters] 4(2),
41–43 (1966) [in Russian]
[30] F. Wilkinson, W.P. Helman, and A.B. Ross, Rate constant for the
decay and reactions of the lowest electronically excited singlet
state of molecular oxygen in solution. An expanded and revised
compilation, J. Phys. Chem. Ref. Data 24(2), 663–1021
(1995),
http://dx.doi.org/10.1063/1.555965
[31] F.J. Vergeldt, R.B.M. Koehorst, A. Van Hoek, and T. Schaafsma,
Intramolecular interactions in the ground and excited state of
tetrakis(N-methylpyridyl) porphyrins, J. Phys. Chem. 99(13),
4397–4405 (1995),
http://dx.doi.org/10.1021/j100013a007
[32] N.N. Kruk, O.P. Parkhots, and N.V. Ivashin, Spectral
manifestation of anion-cation interactions of water-soluble
porphyrins, J. Appl. Spectrosc. (translated from Russian) 68(6),
924–929 (2001),
http://dx.doi.org/10.1023/A:1014382527864
[33] T. Gensch, C. Viappiani, and S.E. Braslavsky, Structural volume
changes upon photoexcitation of porphyrins: Role of the
nitrogen–water interactions, J. Am. Chem. Soc. 121(45),
10573–10582 (1999),
http://dx.doi.org/10.1021/ja9913885
[34] A.A. Krasnovsky, Jr., S.Yu. Egorov, O.V. Nazarova, E.V.
Yartsev, and G.V. Ponomarev, Photogeneration of singlet molecular
oxygen by water-soluble porphyrins, Biofizika 32(6), 982–993
(1982) [in Russian]
[35] N.G. Angeli, M. Gabriela Lagorio, E.A. San Roman, and L.E.
Dicello, Meso-substituted cationic porphyrins of biological
interest. Photophysical and physicochemical properties in solution
and bound to liposomes, Photochem. Photobiol. 72(1), 49–56
(2000),
http://dx.doi.org/10.1562/0031-8655(2000)072<0049:MSCPOB>2.0.CO;2
[36] R. Schmidt, Solvent shift of the 1Δg
→ 3Σg− phosphorescence of O2,
J. Phys. Chem. 100(20), 8049–8052 (1996),
http://dx.doi.org/10.1021/jp960464c
[37] R. Zipfel, R.M. Williams, and W.W. Webb, Nonlinear magic:
Multiphoton microscopy in the bioscience, Nature Biotechnology 21(11),
1369–1377 (2003),
http://dx.doi.org/10.1038/nbt899
[38] R.W. Boyd, Nonlinear Optics (Academic Press, San Diego,
2003)