[PDF]
http://dx.doi.org/10.3952/lithjphys.45208
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 109–113 (2005)
TUNABLE MIDDLE IR OPTICAL
PARAMETRIC OSCILLATOR FOR SPECTROSCOPIC APPLICATIONS
M. Kaučikasa, Z. Kuprionisb, and V.
Vaičikauskasa
aInstitute of Physics, Laboratory of Nonlinear
Optics and Spectroscopy, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: marius_kaucikas@yahoo.com
bUAB “EKSPLA”, Savanorių 231, LT-02300 Vilnius,
Lithuania
Received 15 April 2005
The operation of a middle infrared laser source
based on the tandem optical parametric oscillator (OPO) was
demonstrated. The first stage was based on the nonlinear KTP
crystal and produced up to 45 mJ of 1.57 μm radiation,
while pumped by a commercial Q-switched Nd:YAG laser. The quality
of signal beam was improved by using the unstable resonator. The
AgGaSe2 crystal was used in the second stage OPO.
Idler energies up to 1.2 mJ were generated in this stage within
tuning range from 5 to 12 μm.
Keywords: optical parametric oscillator, frequency
conversion, unstable resonators, lidar
PACS: 42.65.Yj
DERINAMAS VIDURINIOSIOS IR
SRITIES PARAMETRINIS ŠVIESOS GENERATORIUS SPEKTROSKOPINIAMS
TAIKYMAMS
M. Kaučikasa, Z. Kuprionisb, V.
Vaičikauskasa
aFizikos institutas, Vilnius, Lietuva
bUAB “EKSPLA”, Vilnius, Lietuva
Aprašomas viduriniosios IR srities lazerinis
šaltinis, kurį sudaro dviejų pakopų parametrinis šviesos
generatorius (PŠG). Pirmoji pakopa, kur naudojamas KTP netiesinis
kristalas, generavo iki 45 mJ spinduliuotės, kurios bangos ilgis
1,57 μm. Kaupinimui buvo naudojamas komercinis
nanosekundinis Nd:YAG lazeris su aktyvia kokybės moduliacija ir
lempiniu kaupinimu. Signalinės bangos pluošto kokybei pagerinti
buvo naudojamas nestabilus rezonatorius. AgGaSe2
kristalas buvo panaudotas antrojoje pakopoje. Šios pakopos
šalutinės bangos energija siekė 1,2 mJ, o bangos ilgis buvo
derinamas 5–12 μm srityje.
References / Nuorodos
[1] P. Weibring, H. Edner, and S. Svanberg, Versatile mobile lidar
system for environmental monitoring, Appl. Opt. 42(18),
3583–3594 (2003),
http://dx.doi.org/10.1364/AO.42.003583
[2] J.N. Farmer, M.S. Bowers, and W.S. Scharpf, High brightness eye
safe parametric oscillators using confocal unstable resonators, OSA
TOPS on Advanced Solid-State Lasers 26, 567–570 (1999)
[3] S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks, Nearly
diffraction limited signal generated by a lower beam-quality pump in
optical parametric oscillator, Appl. Opt. 42(6), 1048–1051
(2003),
http://dx.doi.org/10.1364/AO.42.001048
[4] Y. Ehrlich et al., High brightness tunable tandem optical
parametric oscillator at 8–12 μm, in: Advanced
Solid-State Photonics 2004, TuB15 (2004),
http://dx.doi.org/10.1364/ASSP.2004.TuB15
[5] K. Kato and E. Takaoka, Sellmeier and thermo-optic dispersion
formulas for KTP, Appl. Opt. 41(24), 5040–5044 (2002),
http://dx.doi.org/10.1364/AO.41.005040
[6] M.V. Alampiev and O.F. Butiagin, Angular and temperature tuning
characteristics of an optical parametric oscillator based on a
KTiOPO4 crystal, Quantum Electronics 25(4),
345–349 (1998),
http://dx.doi.org/10.1070/QE1998v028n04ABEH001221
[7] International Standard ISO 11146, Lasers and laser-related
equipment – Test methods for laser beam parameters – Beam widths,
divergence angle and beam propagation factor (01 06 1999)
[8] S. Chandra, T.H. Allik, G. Catella, R. Utano, and J.A.
Hutchinson, Continuously tunable, 6–14 μm silver-gallium
selenide optical parametric oscillator pumped at 1.57 μm,
Appl. Phys. Lett. 74(5), 584–588 (1997),
http://dx.doi.org/10.1063/1.119920
[9] D.A. Roberts, Dispersion equations for nonlinear optical
crystals: KDP, AgGaSe2 and AgGaS2, Appl. Opt.
35(24), 4677–4688 (1996),
http://dx.doi.org/10.1364/AO.35.004677