[PDF]    http://dx.doi.org/10.3952/lithjphys.45208

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 109–113 (2005)


TUNABLE MIDDLE IR OPTICAL PARAMETRIC OSCILLATOR FOR SPECTROSCOPIC APPLICATIONS
M. Kaučikasa, Z. Kuprionisb, and V. Vaičikauskasa
aInstitute of Physics, Laboratory of Nonlinear Optics and Spectroscopy, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: marius_kaucikas@yahoo.com
bUAB “EKSPLA”, Savanorių 231, LT-02300 Vilnius, Lithuania

Received 15 April 2005

The operation of a middle infrared laser source based on the tandem optical parametric oscillator (OPO) was demonstrated. The first stage was based on the nonlinear KTP crystal and produced up to 45 mJ of 1.57 μm radiation, while pumped by a commercial Q-switched Nd:YAG laser. The quality of signal beam was improved by using the unstable resonator. The AgGaSe2 crystal was used in the second stage OPO. Idler energies up to 1.2 mJ were generated in this stage within tuning range from 5 to 12 μm.
Keywords: optical parametric oscillator, frequency conversion, unstable resonators, lidar
PACS: 42.65.Yj


DERINAMAS VIDURINIOSIOS IR SRITIES PARAMETRINIS ŠVIESOS GENERATORIUS SPEKTROSKOPINIAMS TAIKYMAMS
M. Kaučikasa, Z. Kuprionisb, V. Vaičikauskasa
aFizikos institutas, Vilnius, Lietuva
bUAB “EKSPLA”, Vilnius, Lietuva

Aprašomas viduriniosios IR srities lazerinis šaltinis, kurį sudaro dviejų pakopų parametrinis šviesos generatorius (PŠG). Pirmoji pakopa, kur naudojamas KTP netiesinis kristalas, generavo iki 45 mJ spinduliuotės, kurios bangos ilgis 1,57 μm. Kaupinimui buvo naudojamas komercinis nanosekundinis Nd:YAG lazeris su aktyvia kokybės moduliacija ir lempiniu kaupinimu. Signalinės bangos pluošto kokybei pagerinti buvo naudojamas nestabilus rezonatorius. AgGaSe2 kristalas buvo panaudotas antrojoje pakopoje. Šios pakopos šalutinės bangos energija siekė 1,2 mJ, o bangos ilgis buvo derinamas 5–12 μm srityje.


References / Nuorodos


[1] P. Weibring, H. Edner, and S. Svanberg, Versatile mobile lidar system for environmental monitoring, Appl. Opt. 42(18), 3583–3594 (2003),
http://dx.doi.org/10.1364/AO.42.003583
[2] J.N. Farmer, M.S. Bowers, and W.S. Scharpf, High brightness eye safe parametric oscillators using confocal unstable resonators, OSA TOPS on Advanced Solid-State Lasers 26, 567–570 (1999)
[3] S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks, Nearly diffraction limited signal generated by a lower beam-quality pump in optical parametric oscillator, Appl. Opt. 42(6), 1048–1051 (2003),
http://dx.doi.org/10.1364/AO.42.001048
[4] Y. Ehrlich et al., High brightness tunable tandem optical parametric oscillator at 8–12 μm, in: Advanced Solid-State Photonics 2004, TuB15 (2004),
http://dx.doi.org/10.1364/ASSP.2004.TuB15
[5] K. Kato and E. Takaoka, Sellmeier and thermo-optic dispersion formulas for KTP, Appl. Opt. 41(24), 5040–5044 (2002),
http://dx.doi.org/10.1364/AO.41.005040
[6] M.V. Alampiev and O.F. Butiagin, Angular and temperature tuning characteristics of an optical parametric oscillator based on a KTiOPO4 crystal, Quantum Electronics 25(4), 345–349 (1998),
http://dx.doi.org/10.1070/QE1998v028n04ABEH001221
[7] International Standard ISO 11146, Lasers and laser-related equipment – Test methods for laser beam parameters – Beam widths, divergence angle and beam propagation factor (01 06 1999)
[8] S. Chandra, T.H. Allik, G. Catella, R. Utano, and J.A. Hutchinson, Continuously tunable, 6–14 μm silver-gallium selenide optical parametric oscillator pumped at 1.57 μm, Appl. Phys. Lett. 74(5), 584–588 (1997),
http://dx.doi.org/10.1063/1.119920
[9] D.A. Roberts, Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2 and AgGaS2, Appl. Opt. 35(24), 4677–4688 (1996),
http://dx.doi.org/10.1364/AO.35.004677