[PDF]
http://dx.doi.org/10.3952/lithjphys.45209
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 133–137 (2005)
NONLINEAR I–V
CHARACTERISTICS IN POLYANILINE DUE TO PHONON-ASSISTED TUNNELLING
A. Kiveris and P. Pipinys
Department of Physics, Vilnius Pedagogical University, Studentų
39, LT- 08106 Vilnius, Lithuania
E-mail: studsk@vpu.lt
Received 11 April 2005
Non-linear temperature-dependent
current–voltage (I–V) characteristics of an organic
polyaniline (PAN) thin films diodes measured by Kieffel et al.
(Synth. Met. 135–136, 325–326 (2003)) is explained on the
basis of phonon-assisted tunnelling initiated by electrical field.
The results of temperature dependence of conductivity in PAN films
presented in references: Gosh et al., Phys. Lett. A 260,
138–148 (1999), Mzenda et al., Synth. Met. 127, 285–289
(2002), and Maser et al., Mater. Sci. Engin. C 23, 87–91
(2003) are also explained on the basis of the free charge carrier
generation tunnelling mechanism. From the fit of the experimental
data with the present model the density of localised states which
take part in the current flow is estimated.
Keywords: polyaniline, current–voltage characteristics,
phonon-assisted tunnelling
PACS: 72.10.Di, 73.61.Ph, 73.40.Gk
POLIANILINO VOLTAMPERINIŲ
PRIKLAUSOMYBIŲ NETIESIŠKUMAS FONONAIS PASKATINTŲ TUNELINIŲ
ŠUOLIŲ POŽIŪRIU
A. Kiveris, P. Pipinys
Vilniaus pedagoginis universitetas, Vilnius, Lietuva
Netiesinės polianilino plonų plėvelių
voltamperinių charakteristikų temperatūrinės priklausomybės
(eksperimentiniai autorių duomenys iš [1, 7, 8, 14]) palygintos su
teorinėmis krūvininkų tunelinių šuolių dalyvaujant fononams
tikimybių priklausomybėmis nuo temperatūros ir elektrinio lauko
stiprio. Eksperimento duomenys gerai atitinka apskaičiuotas
tuneliavimo spartos priklausomybes nuo lauko stiprio ir
temperatūros. Palyginus eksperimentinius duomenis su teorinėmis
priklausomybėmis rastas paviršinis srovę sąlygojančių lokalizuotų
centrų tankis, lygus ≈1016 m−2.
References / Nuorodos
[1] M. Gosh, A. Barman, A.K. Meikap, S.K. De, and S. Chatterjee,
Hopping transport in HCl doped conducting polyaniline, Phys. Lett. A
260, 138–148 (1999),
http://dx.doi.org/10.1016/S0375-9601(99)00501-0
[2] A.J. Epstein, J.M. Ginder, F. Zuo, R.W. Bigelow, H.-S. Woo, D.B.
Tanner, A.F. Richter, W.-S. Huang, and A.G. MacDiarmid,
Insulator-to-metal transition in polyaniline, Synth. Met. 18,
303–309 (1987),
http://dx.doi.org/10.1016/0379-6779(87)90896-4
[3] Z.H. Wang, E.M. Scherr, A.G. MacDiarmid, and A.J. Epstein,
Transport and EPR studies of polyaniline: A quasi-one-dimensional
conductor with three-dimensional “metallic” states, Phys. Rev. B 45,
4190–4202 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.4190
[4] M. Reghu, Y. Cao, D. Moses, and A.J. Heeger, Counterion-induced
processibility of polyaniline: Transport at the metal–insulator
boundary, Phys. Rev. B 47, 1758–1764 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.1758
[5] R. Menon, C.O. Yoon, D. Moses, and A.J. Heeger, Transport in
polyaniline near the critical regime of the metal–insulator
transition, Phys. Rev. B 48, 17685–17694 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.17685
[6] R. Pelster, G. Nimtz, and B. Wessling, Fully protonated
polyaniline: Hopping transport on a mesoscopic scale, Phys.Rev. B 49,
12718–12723 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.12718
[7] V.M. Mzenda, S.A. Goodman, and F.D. Auret, Conduction models in
polyaniline: The effect of temperature on the current–voltage
properties of polyaniline over the temperature range 30 < T(K)
< 300, Synth. Met. 127, 285–289 (2002),
http://dx.doi.org/10.1016/S0379-6779(01)00638-5
[8] Y. Kieffel, J.-P. Travers, and J. Planes, Nonlinear electrical
properties of polyaniline: Role of conjugation length, Synth. Met. 135–136,
325–326 (2003),
http://dx.doi.org/10.1016/S0379-6779(02)00618-5
[9] P.A. Pipinis, A.K. Rimeika, and V.A. Lapeika, Temperature
dependence of the reverse current in Schottky barrier diodes,
Semiconductors 32(7), 785–788 (1998),
http://dx.doi.org/10.1134/1.1187506
[10] P. Pipinys, A. Pipiniene, and A. Rimeika, Phonon-assisted
tunneling in reverse biased Schottky diodes, J. Appl. Phys. 86(12),
6875–6878 (1999),
http://dx.doi.org/10.1063/1.371766
[11] P. Pipinys, A. Rimeika, and V. Lapeika, DC conduction in
polymers under high electric fields, J. Phys D. 37, 828–831
(2004),
http://dx.doi.org/10.1088/0022-3727/37/6/003
[12] A. Kiveris, Š. Kudžmauskas, and P. Pipinys, Release of
electrons from traps by an electric field with phonon participation,
Phys. Status Solidi A 37, 321–327 (1976),
http://dx.doi.org/10.1002/pssa.2210370140
[13] S. Makram-Ebeid and M. Lannoo, Quantum model for
phonon-assisted tunnel ionization of deep levels in a semiconductor,
Phys. Rev. B 25, 6406–6424 (1982),
http://dx.doi.org/10.1103/PhysRevB.25.6406
[14] W.K. Maser, A.M. Benito, M.A. Callejas, T. Seeger, M.T.
Martinez, J. Schreiber, J. Muszynski, O. Chauvet, Z. Osváth, A.A.
Koós, and L.P. Biró, Synthesis and characterization of new
polyaniline/nanotube composites, Mat. Sci. Engin. C 23,
87–91 (2003),
http://dx.doi.org/10.1016/S0928-4931(02)00235-7