[PDF]    http://dx.doi.org/10.3952/lithjphys.45209

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 133–137 (2005)


NONLINEAR IV CHARACTERISTICS IN POLYANILINE DUE TO PHONON-ASSISTED TUNNELLING
A. Kiveris and P. Pipinys
Department of Physics, Vilnius Pedagogical University, Studentų 39, LT- 08106 Vilnius, Lithuania
E-mail: studsk@vpu.lt

Received 11 April 2005

Non-linear temperature-dependent current–voltage (IV) characteristics of an organic polyaniline (PAN) thin films diodes measured by Kieffel et al. (Synth. Met. 135–136, 325–326 (2003)) is explained on the basis of phonon-assisted tunnelling initiated by electrical field. The results of temperature dependence of conductivity in PAN films presented in references: Gosh et al., Phys. Lett. A 260, 138–148 (1999), Mzenda et al., Synth. Met. 127, 285–289 (2002), and Maser et al., Mater. Sci. Engin. C 23, 87–91 (2003) are also explained on the basis of the free charge carrier generation tunnelling mechanism. From the fit of the experimental data with the present model the density of localised states which take part in the current flow is estimated.
Keywords: polyaniline, current–voltage characteristics, phonon-assisted tunnelling
PACS: 72.10.Di, 73.61.Ph, 73.40.Gk


POLIANILINO VOLTAMPERINIŲ PRIKLAUSOMYBIŲ NETIESIŠKUMAS FONONAIS PASKATINTŲ TUNELINIŲ ŠUOLIŲ POŽIŪRIU
A. Kiveris, P. Pipinys
Vilniaus pedagoginis universitetas, Vilnius, Lietuva

Netiesinės polianilino plonų plėvelių voltamperinių charakteristikų temperatūrinės priklausomybės (eksperimentiniai autorių duomenys iš [1, 7, 8, 14]) palygintos su teorinėmis krūvininkų tunelinių šuolių dalyvaujant fononams tikimybių priklausomybėmis nuo temperatūros ir elektrinio lauko stiprio. Eksperimento duomenys gerai atitinka apskaičiuotas tuneliavimo spartos priklausomybes nuo lauko stiprio ir temperatūros. Palyginus eksperimentinius duomenis su teorinėmis priklausomybėmis rastas paviršinis srovę sąlygojančių lokalizuotų centrų tankis, lygus ≈1016 m−2.


References / Nuorodos


[1] M. Gosh, A. Barman, A.K. Meikap, S.K. De, and S. Chatterjee, Hopping transport in HCl doped conducting polyaniline, Phys. Lett. A 260, 138–148 (1999),
http://dx.doi.org/10.1016/S0375-9601(99)00501-0
[2] A.J. Epstein, J.M. Ginder, F. Zuo, R.W. Bigelow, H.-S. Woo, D.B. Tanner, A.F. Richter, W.-S. Huang, and A.G. MacDiarmid, Insulator-to-metal transition in polyaniline, Synth. Met. 18, 303–309 (1987),
http://dx.doi.org/10.1016/0379-6779(87)90896-4
[3] Z.H. Wang, E.M. Scherr, A.G. MacDiarmid, and A.J. Epstein, Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional “metallic” states, Phys. Rev. B 45, 4190–4202 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.4190
[4] M. Reghu, Y. Cao, D. Moses, and A.J. Heeger, Counterion-induced processibility of polyaniline: Transport at the metal–insulator boundary, Phys. Rev. B 47, 1758–1764 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.1758
[5] R. Menon, C.O. Yoon, D. Moses, and A.J. Heeger, Transport in polyaniline near the critical regime of the metal–insulator transition, Phys. Rev. B 48, 17685–17694 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.17685
[6] R. Pelster, G. Nimtz, and B. Wessling, Fully protonated polyaniline: Hopping transport on a mesoscopic scale, Phys.Rev. B 49, 12718–12723 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.12718
[7] V.M. Mzenda, S.A. Goodman, and F.D. Auret, Conduction models in polyaniline: The effect of temperature on the current–voltage properties of polyaniline over the temperature range 30 < T(K) < 300, Synth. Met. 127, 285–289 (2002),
http://dx.doi.org/10.1016/S0379-6779(01)00638-5
[8] Y. Kieffel, J.-P. Travers, and J. Planes, Nonlinear electrical properties of polyaniline: Role of conjugation length, Synth. Met. 135–136, 325–326 (2003),
http://dx.doi.org/10.1016/S0379-6779(02)00618-5
[9] P.A. Pipinis, A.K. Rimeika, and V.A. Lapeika, Temperature dependence of the reverse current in Schottky barrier diodes, Semiconductors 32(7), 785–788 (1998),
http://dx.doi.org/10.1134/1.1187506
[10] P. Pipinys, A. Pipiniene, and A. Rimeika, Phonon-assisted tunneling in reverse biased Schottky diodes, J. Appl. Phys. 86(12), 6875–6878 (1999),
http://dx.doi.org/10.1063/1.371766
[11] P. Pipinys, A. Rimeika, and V. Lapeika, DC conduction in polymers under high electric fields, J. Phys D. 37, 828–831 (2004),
http://dx.doi.org/10.1088/0022-3727/37/6/003
[12] A. Kiveris, Š. Kudžmauskas, and P. Pipinys, Release of electrons from traps by an electric field with phonon participation, Phys. Status Solidi A 37, 321–327 (1976),
http://dx.doi.org/10.1002/pssa.2210370140
[13] S. Makram-Ebeid and M. Lannoo, Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor, Phys. Rev. B 25, 6406–6424 (1982),
http://dx.doi.org/10.1103/PhysRevB.25.6406
[14] W.K. Maser, A.M. Benito, M.A. Callejas, T. Seeger, M.T. Martinez, J. Schreiber, J. Muszynski, O. Chauvet, Z. Osváth, A.A. Koós, and L.P. Biró, Synthesis and characterization of new polyaniline/nanotube composites, Mat. Sci. Engin. C 23, 87–91 (2003),
http://dx.doi.org/10.1016/S0928-4931(02)00235-7