[PDF]
http://dx.doi.org/10.3952/lithjphys.45301
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 207–211 (2005)
SCANNING NEAR-FIELD OPTICAL
MICROSCOPY OF LIVE CELLS IN LIQUID
R. Januškevičiusa, V. Vaičikauskasa, D.J.
Arndt-Jovinb, and T.M. Jovinb
aDepartment of Nonlinear Optics and Spectroscopy,
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
bDepartment of Molecular Biology, Max Planck
Institute for Biophysical Chemistry, Am Fassberg 11, D-37077
Göttingen, Germany
Received 14 March 2005
A scanning near-field optical microscope (SNOM)
is applied to fluorescence imaging of biological samples in
liquid, including live cells. The SNOM is mounted on a Zeiss
Axiovert 135 TV fluorescence microscope. For feedback we use
tuning fork shear force method. The scanning tip is produced from
a 125 μm optical fibre (8.3 μm core diameter) in a
commercial Sutter P-2000 pipette puller and is coated with
aluminium. Other commercial tips have also been used. Coarse z-axis
adjustment is hydraulic, and fine positioning is accomplished with
piezoelectric tube units. We have constructed the original liquid
chamber, which allows long term stability of scanning and highest
values of the Q factor (300 or more). The depth of liquid layer
was less than 40 μm. Near-field images – the topography
and distribution of membrane fluorescence of live human epithelial
A431 cells, stably transfected with an EGFP fusion protein of the
epidermal growth factor transmembrane receptor protein (EGFR,
erbB1), were obtained in liquid.
Keywords: scanning near-field optical microscopy,
fluorescence microscopy, sub-diffraction limit, live cells
PACS: 07.79.Fc, 87.64.Xx
GYVŲ LĄSTELIŲ SKENUOJANTI ARTIMO
LAUKO MIKROSKOPIJA SKYSTYJE
R. Januškevičiusa, V. Vaičikauskasa,
D.J. Arndt-Jovinb, T.M. Jovinb
aFizikos institutas, Vilnius, Lietuva
bMakso Planko Biofizinės chemijos institutas,
Gėtingenas, Vokietija
Sukurtas ir sukonstruotas optinis artimo lauko
mikroskopas pritaikytas gyvų ląstelių ir kitų biologinių objektų,
esančių tirpaluose, fluorescenciniam signalui fiksuoti.
Mikroskopas sumontuotas ant fluorescencinio Zeiss Axiovert 135
mikroskopo. Skenavimui naudotos adatos, pagaminamos kaitinant ir
tempiant šviesolaidį, kurios vėliau metalizuojamos. Sukonstruota
speciali skystinė kiuvetė, pritaikyta biologiniams objektams
skenuoti tirpale. Mažas tirpalo gylis kiuvetėje minimaliai įtakoja
adatos jautrį skenuojant bandinio paviršių ir nekritiškai sumažina
adatos rezonanso Q faktorių. Tai leidžia skenuoti lengvai
pažeidžiamą gyvų ląstelių paviršių. Gauti eksperimentiniai gyvų
žmogaus epitelio A431 ląstelių, žymėtų EGFP baltymu, artimo lauko
fluorescencijos ir topografijos
vaizdai.
References / Nuorodos
[1] V. Subramaniam, A.K. Kirsch, and T.M. Jovin, Cell biological
applications of scanning near-field optical microscopy (SNOM), Cell.
Mol. Biol. 44, 689–700 (1998)
[2] P. Nagy, A. Jenei, A.K. Kirsch, J. Szöllösi, S. Damjanovich, and
T.M. Jovin, Activation dependent clustering of the erbB2 receptor
tyrosine kinase detected by scanning near-field optical microscopy,
J. Cell Sci. 112, 1733–1741 (1999),
http://dx.doi.org/10.1242/jcs.112.11.1733
[3] J. Hwang, L.A. Gheber, L. Margolis, and M. Edidin, Domains in
cell plasma membranes investigated by near-field scanning optical
microscopy, Biophys. J. 74, 2184–2190 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)77927-5
[4] H. Muramatsu, N. Chiba, K. Homma, and K. Nakajima, Near-field
optical microscopy in liquids, Appl. Phys. Lett. 66,
3245–3247 (1995),
http://dx.doi.org/10.1063/1.113392
[5] L.A. Gheber, J. Hwang, and M. Edidin, Design and optimization of
a near-field scanning optical microscope for imaging biological
samples in liquid, Appl. Opt. 37, 3574–3581 (1998),
http://dx.doi.org/10.1364/AO.37.003574
[6] P.J. Moyer and S.B. Kämmer, High-resolution imaging using
near-field scanning optical microscopy and shear force feedback in
water, Appl. Phys. Lett. 68, 3380–3382 (1996),
http://dx.doi.org/10.1063/1.116510
[7] T.H. Keller, T. Rayment, D. Klenerman, and R.J. Stephenson,
Scanning near-field microscopy in reflection mode imaging in liquid,
Rev. Sci. Instrum. 68, 1448–1454 (1997),
http://dx.doi.org/10.1063/1.1147937
[8] T.H. Keller, T. Rayment, and D. Klenerman, Optical chemical
imaging of tobacco mosaic virus in solution at 60-nm resolution,
Biophys. J. 73, 653–658 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)77914-7
[9] A. Karrai and R. Grober, Piezo-electric tuning fork tip–sample
distance control for near field optical microscopes, Ultramicroscopy
61, 197–205 (1995),
http://dx.doi.org/10.1016/0304-3991(95)00104-2
[10] P. Lambelet, M. Pfeffer, A. Sayah, and F. Marquis-Weible,
Reduction of tip–sample interaction forces for scanning near-field
optical microscopy in a liquid environment, Ultramicroscopy 71,
117–121 (1998),
http://dx.doi.org/10.1016/S0304-3991(97)00055-7
[11] W.H. Rensen and N.F. Hulst, Imaging soft samples in liquid with
tuning fork based shear force microscopy, Appl. Phys. Lett. 77,
1557–1559 (2000),
http://dx.doi.org/10.1063/1.1308058
[12] A.P. Sommer and R.P. Franke, Hydrophobic optical elements for
near-field optical analysis (NOA) in liquid environment – a
preliminary study, Micron 33, 227–231 (2002),
http://dx.doi.org/10.1016/S0968-4328(01)00021-X
[13] A.H. Mannelquist, H.I. Iwamoto, G. Szabo, and Z. Shao,
Near-field optical microscopy in aqueous solution: Implementation
and characterization of a vibrating probe, J. Microsc. 205,
53–60 (2002),
http://dx.doi.org/10.1046/j.0022-2720.2001.00965.x
[14] M. Koopman, A. Cambi, B.I. de Bakker, B. Joosten, C. Figdor,
N.F. van Hulst, and M. Garcia-Parajo, Near-field scanning optical
microscopy in liquid for high resolution single molecule detection
on dentritic cells, FEBS Lett. 573, 6–10 (2004),
http://dx.doi.org/10.1016/j.febslet.2004.07.035
[15] M. Koopman, B.I. de Bakker, M. Garcia-Parajo, and N.F. van
Hulst, Shear force imaging of soft samples in liquid using a diving
bell concept, Appl. Phys. Lett. 83, 5083–5085 (2003),
http://dx.doi.org/10.1063/1.1634385
[16] R.T. Doyle, M.J. Szulzcewski, and P.G. Haydon, Extraction of
near-field fluorescence from composite signals to provide high
resolution images of glial cells, Biophys. J. 80, 2477–2482
(2001),
http://dx.doi.org/10.1016/S0006-3495(01)76216-9