[PDF]
http://dx.doi.org/10.3952/lithjphys.45304
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 183–189 (2005)
Corrected digital version. Erratum in print: Lith. J.
Phys. 45, 411–412 (2005), http://dx.doi.org/10.3952/lithjphys.45515
DEFORMATION POTENTIAL LIMITED
SPIN RELAXATION IN CUBIC SEMICONDUCTORS ∗
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 13 April 2005
The scattering of valence band hole spin by
acoustical and optical phonons due to deformation potential
interaction is considered. Six-band deformation potential matrix,
which takes into account doubly degenerate heavy-mass, light-mass,
and split-off energy bands, is used to evaluate the matrix
elements for spin conserving and flipping transitions. The concept
of the spin surface was addressed to define the initial and final
states of the hole spin. It was found that, in agreement with
experiment, the spin conserving and flipping transitions are of
comparable magnitude in both intravalence and intervalence band
scattering mediated by acoustical as well as optical phonons.
Keywords: spintronics, spin relaxation, spin dephasing, hole
spin, deformation potential scattering
PACS: 85.75.-d, 72.25.Rb, 67.57.Lm
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
DEFORMACINIO POTENCIALO SĄLYGOTA
SUKINIO RELAKSACIJA KUBINIUOSE PUSLAIDININKIUOSE
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Trumpai apžvelgta laisvųjų krūvininkų sukinio
relaksacija puslaidininkiuose. Aptartas naujas sukinio gyvavimo
trukmės skaičiavimo būdas, grindžiamas sukinio paviršiaus
koncepcija [11–13]. Sukinio paviršius apibūdina visas įmanomas
sukinio poliarizacijas, kai elektronas arba skylė balistiškai juda
vienoje iš energinių juostų. Žinant laisvojo krūvininko sukinio
paviršių, lengva parinkti spinoriaus parametrus prieš ir po
sklaidos, kuriuos būtina žinoti, skaičiuojant su sukiniu susietus
matricinius sklaidos elementus. Kiek smulkiau aptarta skylės
sukinio relaksacija p tipo puslaidininkiuose, kai skylė sąveikauja
su akustiniais ir optiniais fononais per deformacinį potencialą.
Parodyta, kad dėl stiprios sukinio ir orbitos sąveikos, kuri
būdinga elementariųjų puslaidininkių bei III–V, II–VI junginių
valentinėms juostoms, skylės sukinio apvertimo tikimybė po
susidūrimo su fononu yra didelė. Tai patvirtinta ir eksperimentu.
Pateikta sukinio sklaidos matricinių elementų priklausomybė nuo
skylės bangos skaičiaus GaAs atveju.
References / Nuorodos
[1] I. Žutić, J. Fabian, and S.D. Sarma, Spintronics: Fundamentals
and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[2] R.J. Elliott, Theory of the effect of spin–orbit coupling on
magnetic resonance in some semiconductors, Phys. Rev. 96(2),
266–279 (1954),
http://dx.doi.org/10.1103/PhysRev.96.266
[3] Y. Yafet, g factors and spin-lattice relaxations of
conduction electrons, in: Solid State Physics, Vol. 14, eds.
F. Seitz and D. Turnbull (New York, Academic Press, 1963) pp. 1–98,
http://dx.doi.org/10.1016/S0081-1947(08)60259-3
[4] M.I. D'yakonov and V.I. Perel, Spin relaxation of conduction
electrons in noncentrosymmetric semiconductors, Sov. Phys. – Solid
State 13(12), 3023–3026 (1972). [Fiz. Tverd. Tela 13,
3581 (1971)]
[5] G.L. Bir, A.G. Aronov, and G.E. Pikus, Spin relaxation of
electrons due to scattering by holes, Sov. Phys. – JETP 42,
705–712 (1976) [Zh. Eks. Teor. Fiz. 69, 1382 (1975)]
[6] C.P. Slichter, Principles of Magnetic Resonance
(Springer, Berlin – Heidelberg – New York, 1980), Chapter 5
[7] P.H. Song and K.W. Kim, Spin relaxation of conduction electrons
in bulk III–V semiconductors, Phys. Rev. B 66(3),
035207-(1–8) (2002),
http://dx.doi.org/10.1103/PhysRevB.66.035207
[8] A.N. Titkov, V.I. Safarov, and G. Lampel, Optical orientation of
holes in GaAs, in: Inst. Phys. Conf. Ser. No. 43,
1031–1034 (1979)
[9] B. Baylac, T. Amand, X. Marie, B. Dareys, M. Brousseau, G.
Basquet, and V. Thierry-Mieg, Hole spin relaxation in n-modulation
doped quantum wells, Solid State Commun. 93(1), 57–60
(1995),
http://dx.doi.org/10.1016/0038-1098(94)00721-7
[10] D.J. Hilton and C.L. Tang, Optical orientation and femtosecond
relaxation of spin-polarized holes in GaAs, Phys. Rev. Lett. 89(14),
146601-(1–4) (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.146601
[11] A. Dargys, Coherent properties of hole spin, Lithuanian J.
Phys. 43(2), 123–128 (2003)
[12] A. Dargys, Hole spin surfaces in A3B5
semiconductors, Phys. Status Solidi B 241(13), 2954–2961
(2004),
http://dx.doi.org/10.1002/pssb.200402078
[13] A. Dargys, Hole spin dynamics under π-pulse excitation,
Phys. Rev. B 70(12), 125207-(1–11) (2004),
http://dx.doi.org/10.1103/PhysRevB.70.125207
[14] V.F. Gantmakher and Y.B. Levinson, Carrier Scattering in
Metals and Semiconductors (North-Holland, Amsterdam, 1987)
[15] M. Tiersten, Acoustic-mode scattering mobility of holes in
diamond type semiconductors, J. Phys. Chem. Solids 5, 1151–1168
(1964),
http://dx.doi.org/10.1016/0022-3697(64)90013-7
[16] F.L. Madarasz and F. Szmulowicz, Transition rates for
acoustic-phononhole scattering in p-type silicon with
nonparabolic bands, Phys. Rev. B 24(8), 46114622 (1981),
http://dx.doi.org/10.1103/PhysRevB.24.4611
[17] F. Szmulowicz, Calculation of optical- and
acoustic-phonon-limited conductivity and Hall mobility for p-type
silicon and germanium, Phys. Rev. B 28(10), 59435963 (1983),
http://dx.doi.org/10.1103/PhysRevB.28.5943
[18] G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced
Effects in Semiconductors (Wiley, New York, 1974), Chapter 5
[19] A. Dargys, Hole spin relaxation: Optical deformation potential
scattering, Semicond. Sci. Technol. 20(8), 733739 (2005),
http://dx.doi.org/10.1088/0268-1242/20/8/014
[20] A. Dargys. Unpublished