[PDF]    http://dx.doi.org/10.3952/lithjphys.45304

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 183–189 (2005)
Corrected digital version. Erratum in print:
Lith. J. Phys. 45, 411–412 (2005), http://dx.doi.org/10.3952/lithjphys.45515


DEFORMATION POTENTIAL LIMITED SPIN RELAXATION IN CUBIC SEMICONDUCTORS
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 13 April 2005

The scattering of valence band hole spin by acoustical and optical phonons due to deformation potential interaction is considered. Six-band deformation potential matrix, which takes into account doubly degenerate heavy-mass, light-mass, and split-off energy bands, is used to evaluate the matrix elements for spin conserving and flipping transitions. The concept of the spin surface was addressed to define the initial and final states of the hole spin. It was found that, in agreement with experiment, the spin conserving and flipping transitions are of comparable magnitude in both intravalence and intervalence band scattering mediated by acoustical as well as optical phonons.
Keywords: spintronics, spin relaxation, spin dephasing, hole spin, deformation potential scattering
PACS: 85.75.-d, 72.25.Rb, 67.57.Lm
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


DEFORMACINIO POTENCIALO SĄLYGOTA SUKINIO RELAKSACIJA KUBINIUOSE PUSLAIDININKIUOSE
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Trumpai apžvelgta laisvųjų krūvininkų sukinio relaksacija puslaidininkiuose. Aptartas naujas sukinio gyvavimo trukmės skaičiavimo būdas, grindžiamas sukinio paviršiaus koncepcija [11–13]. Sukinio paviršius apibūdina visas įmanomas sukinio poliarizacijas, kai elektronas arba skylė balistiškai juda vienoje iš energinių juostų. Žinant laisvojo krūvininko sukinio paviršių, lengva parinkti spinoriaus parametrus prieš ir po sklaidos, kuriuos būtina žinoti, skaičiuojant su sukiniu susietus matricinius sklaidos elementus. Kiek smulkiau aptarta skylės sukinio relaksacija p tipo puslaidininkiuose, kai skylė sąveikauja su akustiniais ir optiniais fononais per deformacinį potencialą. Parodyta, kad dėl stiprios sukinio ir orbitos sąveikos, kuri būdinga elementariųjų puslaidininkių bei III–V, II–VI junginių valentinėms juostoms, skylės sukinio apvertimo tikimybė po susidūrimo su fononu yra didelė. Tai patvirtinta ir eksperimentu. Pateikta sukinio sklaidos matricinių elementų priklausomybė nuo skylės bangos skaičiaus GaAs atveju.


References / Nuorodos


[1] I. Žutić, J. Fabian, and S.D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[2] R.J. Elliott, Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors, Phys. Rev. 96(2), 266–279 (1954),
http://dx.doi.org/10.1103/PhysRev.96.266
[3] Y. Yafet, g factors and spin-lattice relaxations of conduction electrons, in: Solid State Physics, Vol. 14, eds. F. Seitz and D. Turnbull (New York, Academic Press, 1963) pp. 1–98,
http://dx.doi.org/10.1016/S0081-1947(08)60259-3
[4] M.I. D'yakonov and V.I. Perel, Spin relaxation of conduction electrons in noncentrosymmetric semiconductors, Sov. Phys. – Solid State 13(12), 3023–3026 (1972). [Fiz. Tverd. Tela 13, 3581 (1971)]
[5] G.L. Bir, A.G. Aronov, and G.E. Pikus, Spin relaxation of electrons due to scattering by holes, Sov. Phys. – JETP 42, 705–712 (1976) [Zh. Eks. Teor. Fiz. 69, 1382 (1975)]
[6] C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin – Heidelberg – New York, 1980), Chapter 5
[7] P.H. Song and K.W. Kim, Spin relaxation of conduction electrons in bulk III–V semiconductors, Phys. Rev. B 66(3), 035207-(1–8) (2002),
http://dx.doi.org/10.1103/PhysRevB.66.035207
[8] A.N. Titkov, V.I. Safarov, and G. Lampel, Optical orientation of holes in GaAs, in: Inst. Phys. Conf. Ser. No. 43, 1031–1034 (1979)
[9] B. Baylac, T. Amand, X. Marie, B. Dareys, M. Brousseau, G. Basquet, and V. Thierry-Mieg, Hole spin relaxation in n-modulation doped quantum wells, Solid State Commun. 93(1), 57–60 (1995),
http://dx.doi.org/10.1016/0038-1098(94)00721-7
[10] D.J. Hilton and C.L. Tang, Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs, Phys. Rev. Lett. 89(14), 146601-(1–4) (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.146601
[11] A. Dargys, Coherent properties of hole spin, Lithuanian J. Phys. 43(2), 123–128 (2003)
[12] A. Dargys, Hole spin surfaces in A3B5 semiconductors, Phys. Status Solidi B 241(13), 2954–2961 (2004),
http://dx.doi.org/10.1002/pssb.200402078
[13] A. Dargys, Hole spin dynamics under π-pulse excitation, Phys. Rev. B 70(12), 125207-(1–11) (2004),
http://dx.doi.org/10.1103/PhysRevB.70.125207
[14] V.F. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987)
[15] M. Tiersten, Acoustic-mode scattering mobility of holes in diamond type semiconductors, J. Phys. Chem. Solids 5, 1151–1168 (1964),
http://dx.doi.org/10.1016/0022-3697(64)90013-7
[16] F.L. Madarasz and F. Szmulowicz, Transition rates for acoustic-phononhole scattering in p-type silicon with nonparabolic bands, Phys. Rev. B 24(8), 46114622 (1981),
http://dx.doi.org/10.1103/PhysRevB.24.4611
[17] F. Szmulowicz, Calculation of optical- and acoustic-phonon-limited conductivity and Hall mobility for p-type silicon and germanium, Phys. Rev. B 28(10), 59435963 (1983),
http://dx.doi.org/10.1103/PhysRevB.28.5943
[18] G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974), Chapter 5
[19] A. Dargys, Hole spin relaxation: Optical deformation potential scattering, Semicond. Sci. Technol. 20(8), 733739 (2005),
http://dx.doi.org/10.1088/0268-1242/20/8/014
[20] A. Dargys. Unpublished