[PDF]    http://dx.doi.org/10.3952/lithjphys.45401

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 241–247 (2005)


CP / MAS, 13C AND 17O NMR STUDIES OF PROTON TRANSFER AND DYNAMICS OF CYANOPYRIDINE HYDROGEN-BOND COMPLEX WITH TRICHLOROACETIC ACID IN CRYSTAL AND IN SOLUTION
V. Balevičiusa and H. Fuessb
aFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vytautas.balevicius@ff.vu.lt
bInstitute of Materials Science, University of Technology Darmstadt, Petersenstr. 23, D-64287 Darmstadt, Germany
E-mail: hfuess@tu-darmstadt.de

Received 21 June 2005

The hydrogen bond (H-bond) in the complex of cyanopyridine (4-pyridincarbonitrile, C6H4N2, further CyPy) with trichloroacetic acid (TCA) was investigated in the solid state and in the solution (1 M in CH3CN). The 13C CP / MAS results as well as X-ray and neutron diffraction reveal a complete proton transfer (CPT) for the CyPy·TCA complex. An experimental criterion of the threshold of CPT is proposed. Reorientational dynamics of ‘free’ and ‘bonded’ CyPy molecules in solution were investigated by 17O and 13C NMR relaxation time and nuclear Overhauser effect (NOE) factor measurements. The rotational diffusion even of ‘free’ CyPy molecules is anisotropic, with a corresponding correlation time of 3 ps for rotation and that of 6 ps for tumbling at 293 K. The formation of the CyPy·TCA H-bond complex causes a general slowdown of the overall rotational motion with a very slight increase in its anisotropy (7 ps for rotation and 17 ps for tumbling, respectively). The results are compared with similar data on H-bonding in pyridine N-oxide/acid systems.
Keywords: hydrogen bonding, NMR shifts and relaxation, pyridine
PACS: 33.15.Fm, 76.60.-k, 33.70.Jg
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


CIANOPIRIDINO VANDENILINIO RYŠIO KOMPLEKSO SU TRICHLORACTO RŪGŠTIMI DINAMIKOS IR PROTONO PERNAŠOS TYRIMAI CP / MAS, 13C IR 17O BMR METODAIS
V. Balevičiusa, H. Fuessb
aVilniaus universitetas, Vilnius, Lietuva
bDarmštato technikos universitetas, Darmštatas, Vokietija

Vandenilinio ryšio tarp cianopiridino (CyPy) ir trichloracto rūgšties (TCR) molekulių ypatumai ištirti taikant CP / MAS (crosspolarization / magic angle spinning), 13C ir 17O BMR metodus. 13C CP / MAS duomenys patvirtina neutronų ir Röntgen’o spindulių difrakcijos išvadas, kad kristalinėje fazėje susidaro CyPy·TCR kompleksai, kuriuose TCR protonas yra visiškai perneštas link CyPy azoto atomo. Tirpale pasireiškia sudėtingi pusiausvirieji vyksmai, kuriose konkuruoja visiškoji (VPP) ir dalinė protono pernaša (DPP) bei TCR molekulių dimerizavimasis. Pastebėta tų vyksmų įtaka 13C BMR signalų poslinkiams ir suformuluotas eksperimentinis DPP virsmo į VPP aptikimo kriterijus. Išmatavus 13C ir 17O BMR relaksacijų trukmes bei NOE (nuclear Overhauser effect) faktorius, apskaičiuoti nesurištųjų ir asocijuotųjų CyPy molekulių sukamojo judesio dinamikos parametrai. Parodyta, kad net ir laisvųjų CyPy molekulių sukimasis yra anizotropiškas, kuris 293 K temperatūroje apibūdinamas atitinkamai 3 ps molekulių sukimosi aplink „ilgąją“ ašį ir 7 ps pačios ašies persiorientavimo koreliacijų trukmėmis. Susidarius vandeniliniam ryšiui, molekulių sukimasis sulėtėja, bet anizotropiškumas pakinta nežymiai (koreliacijų trukmės 7 ir 17 ps). Rezultatai palyginti su analogiškais piridino N oksido tyrimų duomenimis.


References / Nuorodos


[1] N.S. Golubev, I.G. Shenderovich, S.N. Smirnov, G.S. Denisov, and H.H. Limbach, Nuclear scalar spin–spin coupling reveals novel properties of low-barrier hydrogen bonds in a polar environment, Chem. Eur. J. 5(2), 492–497 (1999),
http://dx.doi.org/10.1002/(SICI)1521-3765(19990201)5:2<492::AID-CHEM492>3.0.CO;2-I
[2] Z. Dega-Szafran and M. Szafran, Complexes of carboxylic acids with pyridines and pyridine N-oxides, Heterocycles 37(1), 627–659 (1994),
http://dx.doi.org/10.3987/REV-93-SR5
[3] Theoretical Treatments of Hydrogen Bonding, ed. D. Hadzi (John Wiley & Sons Ltd, Chichester, 1997)
[4] Pyridine and its Derivatives, Vol. 2, ed. R.A. Abramovich (Wiley-Interscience, New York, 1974)
[5] E. Ochiai, Aromatic Amine Oxides (Elsevier, Amsterdam, 1967)
[6] W.W. Cleland and M.M. Kreevoy, Low-barrier hydrogen-bonds and enzymatic catalysis, Science 264(5167), 1887–1890 (1994),
http://dx.doi.org/10.1126/science.8009219
[7] W.W. Cleland and M.M. Kreevoy, Low-barrier hydrogen-bonds and enzymatic catalysis – Response, Science 269(5220), 104–104 (1995),
http://dx.doi.org/10.1126/science.269.5220.104.a
[8] http://www.mestrec.com/
[9] Origin 6.1, Origin-Lab Corporation,
http://www.OriginLab.com/
[10] V. Balevicius, H. Ehrenberg, H. Fuess, S. Mason, and D. Hadzi, in: Abstracts of International Conference “Structure and Spectroscopy” (Vilnius University, 2004)
[11] V. Balevicius, H. Ehrenberg, H. Fuess, S. Mason, and D. Hadzi, to be published
[12] V. Balevicius and D. Hadzi, in preparation
[13] K.T. Gillen and J.E. Griffiths, Molecular reorientations in liquid benzene: Raman line shapes and 2D NMR relaxation, Chem. Phys. Lett. 17(3), 359–364 (1972),
http://dx.doi.org/10.1016/0009-2614(72)87096-9
[14] M.L. Martin, G.J. Martin, and J.J. Delpuech, Practical NMR Spectroscopy (Heyden, London, 1980)
[15] P. Rubini and D. Champmartin, NMR relaxation study of molecules containing a CO group. Determination of the 17O quadrupolar coupling constant and of the 13C shielding tensor anisotropy in solution, Magn. Reson. Chem. 34, 891–897 (1996),
http://dx.doi.org/10.1002/(SICI)1097-458X(199611)34:11<891::AID-OMR999>3.0.CO;2-Z
[16] P. Rubini, D. Champmartin, and X. Assfeld, Determination of the 17O quadrupolar coupling constant and of the 13C shielding tensor anisotropy in solution for molecules containing a COOH group. NMR relaxation study and theoretical calculations, J. Chim. Phys. 95, 366–376 (1998),
http://dx.doi.org/10.1051/jcp:1998146
[17] A. Banjo, S. Gerard, J. Kevelam, E. Menna, and G. Scorrano, Detecting hydrogen bonding by NMR relaxation of the acceptor nuclei, Chem. Eur. J. 6(16), 2915–2924 (2000),
http://dx.doi.org/10.1002/1521-3765(20000818)6:16<2915::AID-CHEM2915>3.0.CO;2-O
[18] D. Champmarin and P. Rubini, Determination of the 17O quadrupolar coupling constant and of the 13C shielding tensor anisotropy of the CO groups of pentane-2,4-dione and β-diketone complex in solution. NMR relaxation study, Inorg. Chem. 35(1), 179–183 (1996),
http://dx.doi.org/10.1021/ic950635c
[19] I.J.F. Poplett and J.A.S. Smith, 17O and 2H quadrupole double resonance in some carboxylic acid dimers, J. Chem. Soc. Faraday Trans. 2 77, 1473–1485 (1981),
http://dx.doi.org/10.1039/f29817701473
[20] M. Tokar, V. Zagar, and J. Seliger, 1H–17O nuclear-quadrupole double-resonance study of hydrogen disorder in 2-nitrobenzoic acid, J. Magn. Reson. 144, 13–19 (2000),
http://dx.doi.org/10.1006/jmre.2000.2051
[21] J.E. Gready, The relationship between nuclear quadrupole coupling constants and the asymmetry parameter. The interplay of theory and experiment, J. Am. Chem. Soc. 103(13), 3682–3691 (1981),
http://dx.doi.org/10.1021/ja00403a013
[22] J.E. Gready, G.B. Bacskay, and N.S. Hush, Comparison of the effects of symmetric versus asymmetric H bonding on 2H and 17O nuclear quadrupole coupling constants: Application to formic acid and the hydrogen diformate anion, Chem. Phys. 64, 1–17 (1982),
http://dx.doi.org/10.1016/0301-0104(82)85001-5
[23] F.A.L. Anet and I. Yavari, Carbon-13 nuclear magnetic resonance study of pyridine N-oxide, J. Org. Chem. 41(22), 3589–3592 (1976),
http://dx.doi.org/10.1021/jo00884a023