[PDF]
http://dx.doi.org/10.3952/lithjphys.45401
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 241–247 (2005)
CP / MAS, 13C AND 17O
NMR STUDIES OF PROTON TRANSFER AND DYNAMICS OF CYANOPYRIDINE
HYDROGEN-BOND COMPLEX WITH TRICHLOROACETIC ACID IN CRYSTAL AND
IN SOLUTION ∗
V. Balevičiusa and H. Fuessb
aFaculty of Physics, Vilnius University, Saulėtekio
9, LT-10222 Vilnius, Lithuania
E-mail: vytautas.balevicius@ff.vu.lt
bInstitute of Materials Science, University of
Technology Darmstadt, Petersenstr. 23, D-64287 Darmstadt,
Germany
E-mail: hfuess@tu-darmstadt.de
Received 21 June 2005
The hydrogen bond (H-bond) in the complex of
cyanopyridine (4-pyridincarbonitrile, C6H4N2,
further CyPy) with trichloroacetic acid (TCA) was investigated in
the solid state and in the solution (1 M in CH3CN). The
13C CP / MAS results as well as X-ray and neutron
diffraction reveal a complete proton transfer (CPT) for the
CyPy·TCA complex. An experimental criterion of the threshold of
CPT is proposed. Reorientational dynamics of ‘free’ and ‘bonded’
CyPy molecules in solution were investigated by 17O
and 13C NMR relaxation time and nuclear Overhauser
effect (NOE) factor measurements. The rotational diffusion even of
‘free’ CyPy molecules is anisotropic, with a corresponding
correlation time of 3 ps for rotation and that of 6 ps for
tumbling at 293 K. The formation of the CyPy·TCA H-bond complex
causes a general slowdown of the overall rotational motion with a
very slight increase in its anisotropy (7 ps for rotation and 17
ps for tumbling, respectively). The results are compared with
similar data on H-bonding in pyridine N-oxide/acid systems.
Keywords: hydrogen bonding, NMR shifts and relaxation,
pyridine
PACS: 33.15.Fm, 76.60.-k, 33.70.Jg
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
CIANOPIRIDINO VANDENILINIO RYŠIO
KOMPLEKSO SU TRICHLORACTO RŪGŠTIMI DINAMIKOS IR PROTONO PERNAŠOS
TYRIMAI CP / MAS, 13C IR 17O BMR
METODAIS
V. Balevičiusa, H. Fuessb
aVilniaus universitetas, Vilnius, Lietuva
bDarmštato technikos universitetas, Darmštatas,
Vokietija
Vandenilinio ryšio tarp cianopiridino (CyPy) ir
trichloracto rūgšties (TCR) molekulių ypatumai ištirti taikant CP
/ MAS (crosspolarization / magic angle spinning), 13C
ir 17O BMR metodus. 13C CP / MAS duomenys
patvirtina neutronų ir Röntgen’o spindulių difrakcijos išvadas,
kad kristalinėje fazėje susidaro CyPy·TCR kompleksai, kuriuose TCR
protonas yra visiškai perneštas link CyPy azoto atomo. Tirpale
pasireiškia sudėtingi pusiausvirieji vyksmai, kuriose konkuruoja
visiškoji (VPP) ir dalinė protono pernaša (DPP) bei TCR molekulių
dimerizavimasis. Pastebėta tų vyksmų įtaka 13C BMR
signalų poslinkiams ir suformuluotas eksperimentinis DPP virsmo į
VPP aptikimo kriterijus. Išmatavus 13C ir 17O
BMR relaksacijų trukmes bei NOE (nuclear Overhauser effect)
faktorius, apskaičiuoti nesurištųjų ir asocijuotųjų CyPy molekulių
sukamojo judesio dinamikos parametrai. Parodyta, kad net ir
laisvųjų CyPy molekulių sukimasis yra anizotropiškas, kuris 293 K
temperatūroje apibūdinamas atitinkamai 3 ps molekulių sukimosi
aplink „ilgąją“ ašį ir 7 ps pačios ašies persiorientavimo
koreliacijų trukmėmis. Susidarius vandeniliniam ryšiui, molekulių
sukimasis sulėtėja, bet anizotropiškumas pakinta nežymiai
(koreliacijų trukmės 7 ir 17 ps). Rezultatai palyginti su
analogiškais piridino N oksido tyrimų duomenimis.
References / Nuorodos
[1] N.S. Golubev, I.G. Shenderovich, S.N. Smirnov, G.S. Denisov, and
H.H. Limbach, Nuclear scalar spin–spin coupling reveals novel
properties of low-barrier hydrogen bonds in a polar environment,
Chem. Eur. J. 5(2), 492–497 (1999),
http://dx.doi.org/10.1002/(SICI)1521-3765(19990201)5:2<492::AID-CHEM492>3.0.CO;2-I
[2] Z. Dega-Szafran and M. Szafran, Complexes of carboxylic acids
with pyridines and pyridine N-oxides, Heterocycles 37(1),
627–659 (1994),
http://dx.doi.org/10.3987/REV-93-SR5
[3] Theoretical Treatments of Hydrogen Bonding, ed. D. Hadzi
(John Wiley & Sons Ltd, Chichester, 1997)
[4] Pyridine and its Derivatives, Vol. 2, ed. R.A.
Abramovich (Wiley-Interscience, New York, 1974)
[5] E. Ochiai, Aromatic Amine Oxides (Elsevier, Amsterdam,
1967)
[6] W.W. Cleland and M.M. Kreevoy, Low-barrier hydrogen-bonds and
enzymatic catalysis, Science 264(5167), 1887–1890 (1994),
http://dx.doi.org/10.1126/science.8009219
[7] W.W. Cleland and M.M. Kreevoy, Low-barrier hydrogen-bonds and
enzymatic catalysis – Response, Science 269(5220), 104–104
(1995),
http://dx.doi.org/10.1126/science.269.5220.104.a
[8] http://www.mestrec.com/
[9] Origin 6.1, Origin-Lab Corporation,
http://www.OriginLab.com/
[10] V. Balevicius, H. Ehrenberg, H. Fuess, S. Mason, and D. Hadzi,
in: Abstracts of International Conference “Structure and
Spectroscopy” (Vilnius University, 2004)
[11] V. Balevicius, H. Ehrenberg, H. Fuess, S. Mason, and D. Hadzi,
to be published
[12] V. Balevicius and D. Hadzi, in preparation
[13] K.T. Gillen and J.E. Griffiths, Molecular reorientations in
liquid benzene: Raman line shapes and 2D NMR relaxation, Chem. Phys.
Lett. 17(3), 359–364 (1972),
http://dx.doi.org/10.1016/0009-2614(72)87096-9
[14] M.L. Martin, G.J. Martin, and J.J. Delpuech, Practical NMR
Spectroscopy (Heyden, London, 1980)
[15] P. Rubini and D. Champmartin, NMR relaxation study of molecules
containing a CO group. Determination of the 17O
quadrupolar coupling constant and of the 13C shielding
tensor anisotropy in solution, Magn. Reson. Chem. 34,
891–897 (1996),
http://dx.doi.org/10.1002/(SICI)1097-458X(199611)34:11<891::AID-OMR999>3.0.CO;2-Z
[16] P. Rubini, D. Champmartin, and X. Assfeld, Determination of the
17O quadrupolar coupling constant and of the 13C
shielding tensor anisotropy in solution for molecules containing a
COOH group. NMR relaxation study and theoretical calculations, J.
Chim. Phys. 95, 366–376 (1998),
http://dx.doi.org/10.1051/jcp:1998146
[17] A. Banjo, S. Gerard, J. Kevelam, E. Menna, and G. Scorrano,
Detecting hydrogen bonding by NMR relaxation of the acceptor nuclei,
Chem. Eur. J. 6(16), 2915–2924 (2000),
http://dx.doi.org/10.1002/1521-3765(20000818)6:16<2915::AID-CHEM2915>3.0.CO;2-O
[18] D. Champmarin and P. Rubini, Determination of the 17O
quadrupolar coupling constant and of the 13C shielding
tensor anisotropy of the CO groups of pentane-2,4-dione and β-diketone
complex in solution. NMR relaxation study, Inorg. Chem. 35(1),
179–183 (1996),
http://dx.doi.org/10.1021/ic950635c
[19] I.J.F. Poplett and J.A.S. Smith, 17O and 2H
quadrupole double resonance in some carboxylic acid dimers, J. Chem.
Soc. Faraday Trans. 2 77, 1473–1485 (1981),
http://dx.doi.org/10.1039/f29817701473
[20] M. Tokar, V. Zagar, and J. Seliger, 1H–17O
nuclear-quadrupole double-resonance study of hydrogen disorder in
2-nitrobenzoic acid, J. Magn. Reson. 144, 13–19 (2000),
http://dx.doi.org/10.1006/jmre.2000.2051
[21] J.E. Gready, The relationship between nuclear quadrupole
coupling constants and the asymmetry parameter. The interplay of
theory and experiment, J. Am. Chem. Soc. 103(13), 3682–3691
(1981),
http://dx.doi.org/10.1021/ja00403a013
[22] J.E. Gready, G.B. Bacskay, and N.S. Hush, Comparison of the
effects of symmetric versus asymmetric H bonding on 2H
and 17O nuclear quadrupole coupling constants:
Application to formic acid and the hydrogen diformate anion, Chem.
Phys. 64, 1–17 (1982),
http://dx.doi.org/10.1016/0301-0104(82)85001-5
[23] F.A.L. Anet and I. Yavari, Carbon-13 nuclear magnetic resonance
study of pyridine N-oxide, J. Org. Chem. 41(22), 3589–3592
(1976),
http://dx.doi.org/10.1021/jo00884a023