[PDF]
http://dx.doi.org/10.3952/lithjphys.45402
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 225–233 (2005)
COMPLEX PADÉ APPROXIMANTS FOR
BIDIRECTIONAL AND NONPARAXIAL BEAM PROPAGATION METHOD
R. Petruškevičius
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: raimisp@ktl.mii.lt
Received 31 January 2005
The nonparaxial and bidirectional beam
propagation method suitable for modelling near-field and high
numerical aperture (NA) optical storage systems is suggested for
2D geometry and TE polarization of incident light beam. The
complex Padé approximants are introduced for correct approximation
of evanescent field in the near-field optics. Pole–zero shifting
and branch-cut rotation methods of building complex Padé
approximants are studied and compared.
Keywords: near-field optical storage, bidirectional beam
propagation method, nonparaxial beam propagation, evanescent waves,
complex Padé approximants
PACS: 42.25.Bs, 42.40.Ht, 42.79.Vb
KOMPLEKSINIAI PADÉ ARTINIAI
DVIEJŲ KRYPČIŲ IR NEGRETAAŠIAME PLUOŠTO SKLIDIMO METODE
R. Petruškevičius
Fizikos institutas, Vilnius, Lietuva
Negretaašis ir dviejų krypčių pluošto sklidimo
metodas, tinkantis modeliuoti artimo lauko ir didelės skaitmeninės
apertūros optinio duomenų užrašymo sistemas, pasiūlytas 2D
geometrijai ir TE krentančio pluošto poliarizacijai. Kompleksiniai
Padé artiniai įvesti korektiškam nespindulinio lauko aprašymui
artimo lauko optikoje. Nagrinėti ir palyginti polių–nulių postūmio
ir šaknies pjūvio sukimo kompleksinių Padé artinių suformavimo
metodai.
References / Nuorodos
[1] E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H.
Kryder, and C.-H. Chang, Near-field magneto-optics and high density
data storage, Appl. Phys. Lett. 61, 142–144 (1992),
http://dx.doi.org/10.1063/1.108198
[2] K. Kato, S. Ichihara, M. Oumi, H. Maeda, T. Niwa, T. Mitsuoka,
K. Nakajima, T. Ohkubo, and K. Itao, Signal readout using small
near-field optical head with horizontal light introduction through
optical fiber, Jpn. J. Appl. Phys. 42, 5102–5106 (2003),
http://dx.doi.org/10.1143/JJAP.42.5102
[3] K. Goto, Y.-J. Kim, S. Mitrugi, K. Kurihara, and T. Horibe,
Microoptical two-dimensional devices for the optical memory head of
ultrahigh data transfer rate and density system using a vertical
cavity surface emitting laser (VCSEL) array, Jpn. J. Appl. Phys. 41,
4835–4840 (2002),
http://dx.doi.org/10.1143/JJAP.41.4835
[4] J. Hashizume, S. Shinada, and F. Koyama, Near-field optical
probing using a microaperture GaInAs/GaAs surface emitting laser,
Jpn. J. Appl. Phys. 41, L700–L702 (2002),
http://dx.doi.org/10.1143/JJAP.41.L700
[5] B.D. Terris, H.J. Mamin, and D. Rugar, Near-field optical data
storage. Appl. Phys. Lett. 68, 141–143 (1996),
http://dx.doi.org/10.1063/1.116127
[6] T.D. Milster, J.S. Jo, and K. Hirota, Roles of propagating and
evanescent waves in solid immersion lens systems, Appl. Opt. 38,
5046–5067 (1999),
http://dx.doi.org/10.1364/AO.38.005046
[7] J. Tominaga, T. Nakano, and N. Atoda, An approach for recording
and readout beyond the diffraction limit with an Sb thin film, Appl.
Phys. Lett. 73, 2078–2080 (1998),
http://dx.doi.org/10.1063/1.122383
[8] T. Nakano, Y. Yamakawa, J. Tominaga, and N. Atoda, Near-field
optical simulation of super-resolution near-field structure disks,
Jpn. J. Appl. Phys. 40, 1531–1535 (2001),
http://dx.doi.org/10.1143/JJAP.40.1531
[9] W.-C. Lin and D.P. Tsai, Nonlinear near-field optical effects of
the AgOx-type super-resolution near-field
structure, Jpn. J. Appl. Phys. 42, 1031–1032 (2003),
http://dx.doi.org/10.1143/JJAP.42.1031
[10] J. Guerra, D. Vezenov, P. Sullivan, W. Haimberger, and L.
Thulin, Near-field optical recording without low-flying heads:
Integral near-field optical (INFO) media, Jpn. J. Appl. Phys. 41,
1866–1875 (2002),
http://dx.doi.org/10.1143/JJAP.41.1866
[11] A. Taflove and S.C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method, 2nd ed. (Artech
House, Boston, 2000)
[12] K.S. Yee, Numerical solution of initial boundary value problems
involving Maxwell's equations in isotropic media, IEEE Trans.
Antennas Propag. 14, 302–307 (1966),
http://dx.doi.org/10.1109/TAP.1966.1138693
[13] H.J.W.M. Hoekstra, On beam propagation methods for modeling in
integrated optics, Opt. Quantum Electron. 29, 157–171, 1997,
http://dx.doi.org/10.1023/A:1018549904885
[14] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert,
Numerical techniques for modeling guided-wave photonic devices, IEEE
J. Select. Top. Quantum Electron. 6, 150–162 (2000),
http://dx.doi.org/10.1109/2944.826883
[15] J. Yamauchi, Propagating Beam Analysis of Optical
Waveguides (Research Studies Press, Baldock, 2003)
[16] M.D. Feit and J.A. Fleck, Light propagation in graded-index
optical fibers, Appl. Opt. 17, 3990–3998 (1978),
http://dx.doi.org/10.1364/AO.17.003990
[17] Y. Chung and N. Dagli, An assessment of finite difference beam
propagation method, IEEE J. Quantum Electron. 26, 1335–1339
(1990),
http://dx.doi.org/10.1109/3.59679
[18] W.P. Huang, Simulation of three-dimensional optical waveguides
by full-vector beam propagation method, IEEE J. Quantum Electron. 29,
2639–2649 (1993),
http://dx.doi.org/10.1109/3.250386
[19] E.E. Kriezis and A.G. Papagiannakis, A three-dimensional full
vectorial beam propagation method for z-dependent
structures, IEEE J. Quantum Electron. 33, 883–890 (1997),
http://dx.doi.org/10.1109/3.572165
[20] F. Fogli, G. Bellanca, P. Bassi, I. Madden, and W. Johnstone,
Highly efficient full-vectorial 3-D BPM modeling of fiber to planar
waveguide coupler, J. Lightwave Tech. 17, 136–143 (1999),
http://dx.doi.org/10.1109/50.737433
[21] Y.-P. Chiou and H.-C. Chang, Analysis of optical waveguide
discontinuities using the Padé approximants, IEEE Ph. Tech. Lett. 9,
964–966 (1997),
http://dx.doi.org/10.1109/68.593367
[22] S.F. Helfert and R. Pregla, The method of lines: A versatile
tool for the analysis of waveguide structures, Electromagnetics 22,
615–637 (2002),
http://dx.doi.org/10.1080/02726340290084166
[23] G.R. Hadley, Wide-angle beam propagation using Padé approximant
operators, Opt. Lett. 17, 1426–1428 (1992),
http://dx.doi.org/10.1364/OL.17.001426
[24] F. Ma, C.L. Xu, and W.P. Huang, Wide-angle full vectorial beam
propagation method, IEE Proc. Optoelectron. 143, 139–143
(1996),
http://dx.doi.org/10.1049/ip-opt:19960123
[25] R. Petruškevičius, G. Bellanca, and P. Bassi, BPM modeling of
three-wave interaction in periodically poled second-order nonlinear
materials, Lithuanian J. Phys. 38, 168–176 (1998)
[26] G.R. Hadley, Multistep method for wide-angle beam propagation,
Opt. Lett. 17, 1743–1745 (1992),
http://dx.doi.org/10.1364/OL.17.001743
[27] H. Rao, M.J. Stell, R. Scarmozzino, and R.M. Osgood, Complex
propagators for evanescent waves in bidirectional beam propagation
method, J. Lightwave Tech. 18, 1155–1160 (2000),
http://dx.doi.org/10.1109/50.857762
[28] C. Vassallo, Limitations of the wide-angle beam propagation
method in nonuniform systems, J. Opt. Soc. Am. A 13, 761–770
(1996),
http://dx.doi.org/10.1364/JOSAA.13.000761
[29] M. Born and E. Wolf, Principles of Optics (Pergamon
Press, Oxford, 1980)
[30] F.A. Milinazzo, C.A. Zala, and G.H. Brooke, Rational
square-root approximations for parabolic equation algorithms, J.
Acoust. Soc. Am. 101, 760–766 (1997),
http://dx.doi.org/10.1121/1.418038
[31] H. El-Refaei, D. Yevick, and I. Betty, Stable and noniterative
bidirectional beam propagation method, IEEE Ph. Tech. Lett. 12,
389–391 (2000),
http://dx.doi.org/10.1109/68.839028
[32] H. Rao, R. Scarmozzino, and R. Osgood, A bidirectional beam
propagation method for multiple dielectric interfaces, IEEE Ph.
Tech. Lett. 11, 830–832 (1999),
http://dx.doi.org/10.1109/68.769722
[33] A. Locatelli, F.-M. Pigozzo, F. Baranio, D. Modotto, A.-D.
Capobianco, and C. De Angelis, Bidirectional beam propagation method
for second-harmonic generation in engineered multilayered
waveguides, Opt. Quantum. Electron. 35, 429–452 (2003),
http://dx.doi.org/10.1023/A:1022965521197
[34] P.L. Ho and Y.Y. Lu, A stable bidirectional propagation method
based on scattering operators, IEEE Ph. Tech. Lett. 13, 1316–1318
(2001),
http://dx.doi.org/10.1109/68.969893
[35] A. Locatelli, D. Modotto, C. De Angelis, F.-M. Pigozzo, and
A.-D. Capobianco, Nonlinear bidirectional beam propagation method
based on scattering operators for periodic microstructured
waveguides, J. Opt. Soc. Am. B 20, 1724–1731 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001724