[PDF]    http://dx.doi.org/10.3952/lithjphys.45407

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 267–272 (2005)


ELECTRICAL PROPERTIES OF Li1.3M1.4Ti0.3Al0.3(PO4)3 (M = Ge, Zr) SUPERIONIC CERAMICS
E. Kazakevičiusa, A. Určinskasa, B. Bagdonasa, A. Kežionisa, A.F. Orliukasa, A. Dinduneb, Z. Kanepe bb, and J. Ronisb
aFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: edvardas.kazakevicius@ff.vu.lt
bInstitute of Inorganic Chemistry, Riga Technical University, Miera 34, LV-2169 Salaspils, Latvia

Received 25 July 2005

Preparation and electrical characterization of compounds Li1.3Ge1.4Ti0.3Al0.3(PO4)3 and Li1.3Zr1.4Ti0.3Al0.3(PO4)3, are described. The solid solutions are obtained with M4+→Ti4+ and M4+→Al3+ substitutions in LiM2(PO4)3 (where M = Ge, Zr). The powders have been fabricated by a solid state reaction and their structural characteristics have been studied by X-rays. Ceramic samples have been sintered by varying the sintering duration from 1 to 3 hours. Samples were studied by complex impedance spectroscopy in the frequency range 1 MHz –1.2 GHz and temperature range 300–600 K. Two regions of relaxation dispersion were found. The dispersions were related to the fast Li+ ion transport in the grains and grain boundaries. Variation of the sintering duration has no considerable effect on electrical properties of the ceramics.
Keywords: solid electrolyte ceramics, ionic conductivity, synthesis, transport properties
PACS: 61.10.Nz, 66.30.Hs, 81.05.Je, 82.45.Yz
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


ELEKTRINĖS SUPERJONINIŲ KERAMIKŲ Li1,3M1,4Ti0,3Al0,3(PO4)3 (M = Zr, Ge) SAVYBĖS
E. Kazakevičiusa, A. Určinskasa, B. Bagdonasa, A. Kežionisa, A.F. Orliukasa, A. Dinduneb, Z. Kanepe bb, J. Ronisb
aVilniaus universitetas, Vilnius, Lietuva
bRygos technikos universiteto Neorganinės chemijos institutas, Salaspilis, Latvija

Joninis junginių LiZr2(PO4)3 ir LiGe2(PO4)3 laidumas yra palyginti mažas, tačiau Zr4+ ir Ge4+ katijonų daliniai keitimai kitais katijonais gali net keliomis eilėmis jį padidinti. Yra paskelbta nemažai darbų, kuriuose buvo tirtos medžiagos, gautos keičiant Zr4+→ Sc3+, Ti4+, Hf4+, Ta4+ ir Ge4+→ Al3+, Cr3+. Pavyzdžiui, Li1,5Ge1,5Al0,5(PO4)3 laidumas kambario temperatūroje yra 3,5·10−3 S/m, nors pradinės medžiagos LiGe2(PO4)3 laidumas tesiekia 3·10−5 S/m. Dalinai keičiant Zr4+ ar Ge4+ tokio pat valentingumo katijonais, laidumas taip pat kinta. Pavyzdžiui, junginių sistemos LiGe2−xTix(PO4)3 laidumo vertės padidėja keliomis eilėmis, x kintant nuo 0 iki 2. Minėti darbai paskatino pagaminti naujus sudėtingus junginius, Zr4+ ir Ge4+ dalinai keičiant iš karto dviem katijonais, Al3+ ir Ti4+. Junginiai Li1,3Zr1,4Ti0,3Al0,3(PO4)3 ir Li1,3Ge1,4Ti0,3Al0,3(PO4)3 buvo sintezuoti kietųjų fazių reakcijoje, o jų kristalinė sandara tirta naudojant Röntgen’o spinduliuotės difrakciją. Buvo pagaminta keletas skirtingą laiko tarpą kepintų keramikinių bandinių ir jų elektrinės savybės ištirtos 1–1250 MHz dažnių elektriniuose laukuose, 300–600 K temperatūros tarpe. Tirtose keramikose stebimi du relaksacijos vyksmai, susiję su jonų pernaša kristalituose ir tarpkristalitinėje terpėje.


References / Nuorodos


[1] J.B. Goodenough and H.P.Y. Hong, Mater. Res. Bull. 11, 203–220 (1976),
http://dx.doi.org/10.1016/0025-5408(76)90077-5
[2] P. Fabry, J.P. Gros, and M. Kleitz, Solid state ionics for ISFETs, in: Symposium of Electrochemical Sensors (Rome, 12–14 June, 1984)
[3] B.E. Taylor, A.D. English, and T. Berzins, Mater. Res. Bull. 12, 171–181 (1977),
http://dx.doi.org/10.1016/0025-5408(77)90161-1
[4] S.-C. Li and Z.-Z. Lin, Solid State Ionics 9/10, 835–837 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90098-X
[5] M.A. Subramanian and R. Subramanian, Solid State Ionics 18/19, 562–569 (1986),
http://dx.doi.org/10.1016/0167-2738(86)90179-7
[6] S.-C. Li, J.-Y. Cai, and Z.-X. Lin, Solid State Ionics 28/30, 1265–1270 (1988),
http://dx.doi.org/10.1016/0167-2738(88)90368-2
[7] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, J. Electrochem. Soc. 137, 1023–1027 (1990),
http://dx.doi.org/10.1149/1.2086597
[8] Y. Saito, K. Ado, H. Kageyama, and O. Nakamura, J. Mater. Sci. Lett. 11, 888–890 (1992),
http://dx.doi.org/10.1007/BF00730497
[9] M. Cretin and P. Fabry, J. Eur. Ceram. Soc. 19, 2931–2940 (1999),
http://dx.doi.org/10.1016/S0955-2219(99)00055-2
[10] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, J. Electrochem. Soc. 140, 1827–1833 (1993),
http://dx.doi.org/10.1149/1.2220723
[11] J. Kuwano, N. Sato, M. Kato, and K. Takano, Solid State Ionics 70/71, 332–336 (1994),
http://dx.doi.org/10.1016/0167-2738(94)90332-8
[12] M. Barj, H. Perthuis, and Ph. Colomban, Solid State Ionics 9/10, 845–850 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90100-5
[13] B.V.R. Chowdari, K. Radhakrishnan, K.A. Thomas, and G.V. Subba Rao, Mater. Res. Bull. 24, 221–229 (1989),
http://dx.doi.org/10.1016/0025-5408(89)90129-3
[14] M. Cretin, P. Fabry, and L. Abello, J. Eur. Ceram. Soc. 15, 1149–1156 (1995),
http://dx.doi.org/10.1016/0955-2219(95)00079-A
[15] M. Cretin and P. Fabry, Anal. Chim. Acta 357, 291–299 (1997),
http://dx.doi.org/10.1016/S0003-2670(97)00434-0
[16] J.-M. Winand, A. Rulmond, and P. Tarte, J. Solid State Chem. 93, 341–349 (1991),
http://dx.doi.org/10.1016/0022-4596(91)90308-5
[17] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Bull. Chem. Soc. Jpn. 65, 2200–2204 (1992),
http://dx.doi.org/10.1246/bcsj.65.2200
[18] M. Casiola, U. Constantino, I.G. Krogh Andersen, and E. Krogh Andersen, Solid State Ionics 37, 281–287 (1990),
http://dx.doi.org/10.1016/0167-2738(90)90188-W
[19] F. Sudreau, D. Petit, and J.P. Boilot, J. Solid State Chem. 83, 78–90 (1989),
http://dx.doi.org/10.1016/0022-4596(89)90056-X
[20] D. Petit, Ph. Colomban, G. Collin, and J.P. Boilot, Mater. Res. Bull. 21, 365–371 (1986),
http://dx.doi.org/10.1016/0025-5408(86)90194-7
[21] L.O. Hagman and P. Kierkegaard, Acta Chem. Scand. 22, 1822–1832 (1968),
http://dx.doi.org/10.3891/acta.chem.scand.22-1822
[22] S. Hamdoune, M. Gondran, and D. Tran Qui, Mat. Res. Bull. 21, 237–242 (1986),
http://dx.doi.org/10.1016/0025-5408(86)90212-6
[23] D. Tran Qui, S. Hamdoune, and J.L. Soubeyroux, J. Solid State Chem. 72, 309–315 (1988),
http://dx.doi.org/10.1016/0022-4596(88)90034-5
[24] M. Catti and S. Stramare, Solid State Ionics 136–137, 489–494 (2000),
http://dx.doi.org/10.1016/S0167-2738(00)00459-8
[25] A. Dindune, A. Kežionis, Z. Kanepe, E. Kazakevičius, R. Sobiestianskas, and A. Orliukas, Phosphorus Res. Bull. 10, 387–392 (1999),
http://dx.doi.org/10.3363/prb1992.10.0_387
[26] R. Sobiestianskas, A. Dindune, Z. Kanepe, J. Ronis, A. Kežionis, E. Kazakevičius, and A. Orliukas, Mater. Sci. Eng. B 76, 184–192 (2000),
http://dx.doi.org/10.1016/S0921-5107(00)00437-2
[27] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R. Sobiestianskas, E. Kazakevicius, and A. Orliukas, Phys. Status Solidi A 183, 323–330 (2001),
http://dx.doi.org/10.1002/1521-396X(200102)183:2<323::AID-PSSA323>3.0.CO;2-6
[28] A. Dindune, E. Kazakevičius, Z. Kanepe, J. Ronis, A. Kežionis, and A. Orliukas, Phosphorus Res. Bull. 13, 107–110 (2002),
http://dx.doi.org/10.3363/prb1992.13.0_107
[29] A. Dindune, Z. Kanepe, E. Kazakevičius, A. Kežionis, J. Ronis, and A.F. Orliukas, J. Solid State Electrochem. 7, 113–117 (2003),
http://dx.doi.org/10.1007/s10008-002-0314-3
[30] A. Orliukas, A. Dindune, Z. Kanepe, J. Ronis, E. Kazakevicius, and A. Kežionis, Solid State Ionics 157, 177–181 (2003),
http://dx.doi.org/10.1016/S0167-2738(02)00206-0
[31] R.D. Shanon, Acta Crystallogr. A 32, 751–767 (1976),
http://dx.doi.org/10.1107/S0567739476001551
[32] C. Delmas, J.C. Viala, R. Olazcuaga, G. Le Flem, and P. Hagenmuller, Mat. Res. Bull. 16, 83–90 (1981),
http://dx.doi.org/10.1016/0025-5408(81)90182-3
[33] J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)
[34] J.G. Fletcher, A.R. West, and J.T.S. Irvine, J. Electrochem. Soc. 142, 2650–2654 (1995),
http://dx.doi.org/10.1149/1.2050068
[35] D.P. Almond, G.K. Duncan, and A.R. West, Solid State Ionics 8, 159–164 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90079-6