[PDF]
http://dx.doi.org/10.3952/lithjphys.45407
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 267–272 (2005)
ELECTRICAL PROPERTIES OF Li1.3M1.4Ti0.3Al0.3(PO4)3
(M = Ge, Zr) SUPERIONIC CERAMICS ∗
E. Kazakevičiusa, A. Určinskasa, B. Bagdonasa,
A. Kežionisa, A.F. Orliukasa, A. Dinduneb,
Z. Kanepe bb, and J. Ronisb
aFaculty of Physics, Vilnius University, Saulėtekio
9, LT-10222 Vilnius, Lithuania
E-mail: edvardas.kazakevicius@ff.vu.lt
bInstitute of Inorganic Chemistry, Riga
Technical University, Miera 34, LV-2169 Salaspils, Latvia
Received 25 July 2005
Preparation and electrical characterization of
compounds Li1.3Ge1.4Ti0.3Al0.3(PO4)3
and Li1.3Zr1.4Ti0.3Al0.3(PO4)3,
are described. The solid solutions are obtained with M4+→Ti4+
and M4+→Al3+ substitutions in LiM2(PO4)3
(where M = Ge, Zr). The powders have been fabricated by a solid
state reaction and their structural characteristics have been
studied by X-rays. Ceramic samples have been sintered by varying
the sintering duration from 1 to 3 hours. Samples were studied by
complex impedance spectroscopy in the frequency range 1 MHz –1.2
GHz and temperature range 300–600 K. Two regions of relaxation
dispersion were found. The dispersions were related to the fast Li+
ion transport in the grains and grain boundaries. Variation of the
sintering duration has no considerable effect on electrical
properties of the ceramics.
Keywords: solid electrolyte ceramics, ionic conductivity,
synthesis, transport properties
PACS: 61.10.Nz, 66.30.Hs, 81.05.Je, 82.45.Yz
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
ELEKTRINĖS SUPERJONINIŲ KERAMIKŲ
Li1,3M1,4Ti0,3Al0,3(PO4)3
(M = Zr, Ge) SAVYBĖS
E. Kazakevičiusa, A. Určinskasa, B.
Bagdonasa, A. Kežionisa, A.F. Orliukasa,
A. Dinduneb, Z. Kanepe bb, J. Ronisb
aVilniaus universitetas, Vilnius, Lietuva
bRygos technikos universiteto Neorganinės
chemijos institutas, Salaspilis, Latvija
Joninis junginių LiZr2(PO4)3
ir LiGe2(PO4)3 laidumas yra
palyginti mažas, tačiau Zr4+ ir Ge4+
katijonų daliniai keitimai kitais katijonais gali net keliomis
eilėmis jį padidinti. Yra paskelbta nemažai darbų, kuriuose buvo
tirtos medžiagos, gautos keičiant Zr4+→ Sc3+,
Ti4+, Hf4+, Ta4+ ir Ge4+→
Al3+, Cr3+. Pavyzdžiui, Li1,5Ge1,5Al0,5(PO4)3
laidumas kambario temperatūroje yra 3,5·10−3 S/m, nors
pradinės medžiagos LiGe2(PO4)3
laidumas tesiekia 3·10−5 S/m. Dalinai keičiant Zr4+
ar Ge4+ tokio pat valentingumo katijonais, laidumas
taip pat kinta. Pavyzdžiui, junginių sistemos LiGe2−xTix(PO4)3
laidumo vertės padidėja keliomis eilėmis, x kintant nuo 0 iki 2.
Minėti darbai paskatino pagaminti naujus sudėtingus junginius, Zr4+
ir Ge4+ dalinai keičiant iš karto dviem katijonais, Al3+
ir Ti4+. Junginiai Li1,3Zr1,4Ti0,3Al0,3(PO4)3
ir Li1,3Ge1,4Ti0,3Al0,3(PO4)3
buvo sintezuoti kietųjų fazių reakcijoje, o jų kristalinė sandara
tirta naudojant Röntgen’o spinduliuotės difrakciją. Buvo pagaminta
keletas skirtingą laiko tarpą kepintų keramikinių bandinių ir jų
elektrinės savybės ištirtos 1–1250 MHz dažnių elektriniuose
laukuose, 300–600 K temperatūros tarpe. Tirtose keramikose stebimi
du relaksacijos vyksmai, susiję su jonų pernaša kristalituose ir
tarpkristalitinėje terpėje.
References / Nuorodos
[1] J.B. Goodenough and H.P.Y. Hong, Mater. Res. Bull. 11,
203–220 (1976),
http://dx.doi.org/10.1016/0025-5408(76)90077-5
[2] P. Fabry, J.P. Gros, and M. Kleitz, Solid state ionics for
ISFETs, in: Symposium of Electrochemical Sensors (Rome,
12–14 June, 1984)
[3] B.E. Taylor, A.D. English, and T. Berzins, Mater. Res. Bull. 12,
171–181 (1977),
http://dx.doi.org/10.1016/0025-5408(77)90161-1
[4] S.-C. Li and Z.-Z. Lin, Solid State Ionics 9/10, 835–837
(1983),
http://dx.doi.org/10.1016/0167-2738(83)90098-X
[5] M.A. Subramanian and R. Subramanian, Solid State Ionics 18/19,
562–569 (1986),
http://dx.doi.org/10.1016/0167-2738(86)90179-7
[6] S.-C. Li, J.-Y. Cai, and Z.-X. Lin, Solid State Ionics 28/30,
1265–1270 (1988),
http://dx.doi.org/10.1016/0167-2738(88)90368-2
[7] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, J.
Electrochem. Soc. 137, 1023–1027 (1990),
http://dx.doi.org/10.1149/1.2086597
[8] Y. Saito, K. Ado, H. Kageyama, and O. Nakamura, J. Mater. Sci.
Lett. 11, 888–890 (1992),
http://dx.doi.org/10.1007/BF00730497
[9] M. Cretin and P. Fabry, J. Eur. Ceram. Soc. 19,
2931–2940 (1999),
http://dx.doi.org/10.1016/S0955-2219(99)00055-2
[10] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, J.
Electrochem. Soc. 140, 1827–1833 (1993),
http://dx.doi.org/10.1149/1.2220723
[11] J. Kuwano, N. Sato, M. Kato, and K. Takano, Solid State Ionics
70/71, 332–336 (1994),
http://dx.doi.org/10.1016/0167-2738(94)90332-8
[12] M. Barj, H. Perthuis, and Ph. Colomban, Solid State Ionics 9/10,
845–850 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90100-5
[13] B.V.R. Chowdari, K. Radhakrishnan, K.A. Thomas, and G.V. Subba
Rao, Mater. Res. Bull. 24, 221–229 (1989),
http://dx.doi.org/10.1016/0025-5408(89)90129-3
[14] M. Cretin, P. Fabry, and L. Abello, J. Eur. Ceram. Soc. 15,
1149–1156 (1995),
http://dx.doi.org/10.1016/0955-2219(95)00079-A
[15] M. Cretin and P. Fabry, Anal. Chim. Acta 357, 291–299
(1997),
http://dx.doi.org/10.1016/S0003-2670(97)00434-0
[16] J.-M. Winand, A. Rulmond, and P. Tarte, J. Solid State Chem. 93,
341–349 (1991),
http://dx.doi.org/10.1016/0022-4596(91)90308-5
[17] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi,
Bull. Chem. Soc. Jpn. 65, 2200–2204 (1992),
http://dx.doi.org/10.1246/bcsj.65.2200
[18] M. Casiola, U. Constantino, I.G. Krogh Andersen, and E. Krogh
Andersen, Solid State Ionics 37, 281–287 (1990),
http://dx.doi.org/10.1016/0167-2738(90)90188-W
[19] F. Sudreau, D. Petit, and J.P. Boilot, J. Solid State Chem. 83,
78–90 (1989),
http://dx.doi.org/10.1016/0022-4596(89)90056-X
[20] D. Petit, Ph. Colomban, G. Collin, and J.P. Boilot, Mater. Res.
Bull. 21, 365–371 (1986),
http://dx.doi.org/10.1016/0025-5408(86)90194-7
[21] L.O. Hagman and P. Kierkegaard, Acta Chem. Scand. 22,
1822–1832 (1968),
http://dx.doi.org/10.3891/acta.chem.scand.22-1822
[22] S. Hamdoune, M. Gondran, and D. Tran Qui, Mat. Res. Bull. 21,
237–242 (1986),
http://dx.doi.org/10.1016/0025-5408(86)90212-6
[23] D. Tran Qui, S. Hamdoune, and J.L. Soubeyroux, J. Solid State
Chem. 72, 309–315 (1988),
http://dx.doi.org/10.1016/0022-4596(88)90034-5
[24] M. Catti and S. Stramare, Solid State Ionics 136–137,
489–494 (2000),
http://dx.doi.org/10.1016/S0167-2738(00)00459-8
[25] A. Dindune, A. Kežionis, Z. Kanepe, E. Kazakevičius, R.
Sobiestianskas, and A. Orliukas, Phosphorus Res. Bull. 10,
387–392 (1999),
http://dx.doi.org/10.3363/prb1992.10.0_387
[26] R. Sobiestianskas, A. Dindune, Z. Kanepe, J. Ronis, A.
Kežionis, E. Kazakevičius, and A. Orliukas, Mater. Sci. Eng. B 76,
184–192 (2000),
http://dx.doi.org/10.1016/S0921-5107(00)00437-2
[27] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R. Sobiestianskas,
E. Kazakevicius, and A. Orliukas, Phys. Status Solidi A 183,
323–330 (2001),
http://dx.doi.org/10.1002/1521-396X(200102)183:2<323::AID-PSSA323>3.0.CO;2-6
[28] A. Dindune, E. Kazakevičius, Z. Kanepe, J. Ronis, A. Kežionis,
and A. Orliukas, Phosphorus Res. Bull. 13, 107–110 (2002),
http://dx.doi.org/10.3363/prb1992.13.0_107
[29] A. Dindune, Z. Kanepe, E. Kazakevičius, A. Kežionis, J. Ronis,
and A.F. Orliukas, J. Solid State Electrochem. 7, 113–117
(2003),
http://dx.doi.org/10.1007/s10008-002-0314-3
[30] A. Orliukas, A. Dindune, Z. Kanepe, J. Ronis, E. Kazakevicius,
and A. Kežionis, Solid State Ionics 157, 177–181 (2003),
http://dx.doi.org/10.1016/S0167-2738(02)00206-0
[31] R.D. Shanon, Acta Crystallogr. A 32, 751–767 (1976),
http://dx.doi.org/10.1107/S0567739476001551
[32] C. Delmas, J.C. Viala, R. Olazcuaga, G. Le Flem, and P.
Hagenmuller, Mat. Res. Bull. 16, 83–90 (1981),
http://dx.doi.org/10.1016/0025-5408(81)90182-3
[33] J.R. Macdonald, Impedance Spectroscopy (Wiley, New
York, 1987)
[34] J.G. Fletcher, A.R. West, and J.T.S. Irvine, J. Electrochem.
Soc. 142, 2650–2654 (1995),
http://dx.doi.org/10.1149/1.2050068
[35] D.P. Almond, G.K. Duncan, and A.R. West, Solid State Ionics 8,
159–164 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90079-6