[PDF]
http://dx.doi.org/10.3952/lithjphys.45408
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 235–239 (2005)
QUASICLASSICAL MODEL OF
MANY-ELECTRON QUANTUM DOTS ∗
E. Anisimovas and A. Matulis
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: egidijus@pfi.lt, amatulis@takas.lt
Received 25 July 2005
The general quasiclassical description of
parabolic many-electron quantum dots in the limit of high magnetic
fields is presented. We obtain the complete wave function of
quantum dots containing an arbitrary number of electrons in the
form of a Gaussian function and calculate the electron–electron
correlation function. Using this function we describe the Wigner
crystallization in quantum dots emphasizing effects brought about
by the finite size of the dots.
Keywords: quantum dots, Wigner crystallization,
quasiclassical approximation
PACS: 73.21.La, 71.10.-w
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
KVAZIKLASIKINIS DAUGIAELEKTRONIŲ
KVANTINIŲ TAŠKŲ MODELIS
E. Anisimovas, A. Matulis
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Pristatoma kvaziklasikinė teorija, aprašanti
daugiaelektronius parabolinius kvantinius taškus stipriuose
magnetiniuose laukuose. Pagrindinės būsenos daugiadalelinė banginė
funkcija užrašoma Gauso funkcijos pavidalu ir iš jos gaunama
elektronų koreliacinė funkcija, aprašanti Wigner’io
kristalizaciją. Atskleidžiama simetrijų konkurencija tarp apskrito
kvantinio taško sienelių potencialo ir šešiakampės vidinės
Wigner’io kristalo sandaros.
References / Nuorodos
[1] P.A. Maksym, H. Imamura, G.P. Mallon, and H. Aoki, J. Phys.:
Condens. Matter 12, R299 (2000),
http://dx.doi.org/10.1088/0953-8984/12/22/201
[2] L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Rep. Prog. Phys.
64, 701 (2001),
http://dx.doi.org/10.1088/0034-4885/64/6/201
[3] S.M. Reimann, Rev. Mod. Phys. 74, 1283 (2002),
http://dx.doi.org/10.1103/RevModPhys.74.1283
[4] S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P.
Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996),
http://dx.doi.org/10.1103/PhysRevLett.77.3613
[5] E. Wigner, Phys. Rev. 46, 1002 (1934),
http://dx.doi.org/10.1103/PhysRev.46.1002
[6] H.W. Jiang, R.L. Willett, H.L. Stormer, D.C. Tsui, L.N.
Pfeiffer, and K.W. West, Phys. Rev. Lett. 65, 633 (1990),
http://dx.doi.org/10.1103/PhysRevLett.65.633
[7] A. Matulis and F.M. Peeters, Solid State Commun. 117,
655 (2001),
http://dx.doi.org/10.1016/S0038-1098(01)00013-8
[8] E. Anisimovas, A. Matulis, M.B. Tavernier, and F.M. Peeters,
Phys. Rev. B 69, 075305 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.075305
[9] E. Anisimovas, A. Matulis, and F.M. Peeters, Phys. Rev. B 70,
195334 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.195334
[10] A. Matulis and E. Anisimovas, J. Phys.: Condens. Matter 17,
3851 (2005),
http://dx.doi.org/10.1088/0953-8984/17/25/012
[11] S.A. Mikhailov, Phys. Rev. B 65, 115312 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.115312
[12] M.B. Tavernier, E. Anisimovas, F.M. Peeters, B. Szafran, J.
Adamowski, and S. Bednarek, Phys. Rev. B 68, 205305 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.205305
[13] V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667
(1994),
http://dx.doi.org/10.1103/PhysRevB.49.2667
[14] P.A. Maksym, Phys. Rev. B 53, 10 871 (1996),
http://dx.doi.org/10.1103/PhysRevE.53.871
[15] C. Eckart, Phys. Rev. 47, 552 (1935),
http://dx.doi.org/10.1103/PhysRev.47.552