[PDF]    http://dx.doi.org/10.3952/lithjphys.45408

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 235–239 (2005)


QUASICLASSICAL MODEL OF MANY-ELECTRON QUANTUM DOTS
E. Anisimovas and A. Matulis
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: egidijus@pfi.lt, amatulis@takas.lt

Received 25 July 2005

The general quasiclassical description of parabolic many-electron quantum dots in the limit of high magnetic fields is presented. We obtain the complete wave function of quantum dots containing an arbitrary number of electrons in the form of a Gaussian function and calculate the electron–electron correlation function. Using this function we describe the Wigner crystallization in quantum dots emphasizing effects brought about by the finite size of the dots.
Keywords: quantum dots, Wigner crystallization, quasiclassical approximation
PACS: 73.21.La, 71.10.-w
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


KVAZIKLASIKINIS DAUGIAELEKTRONIŲ KVANTINIŲ TAŠKŲ MODELIS
E. Anisimovas, A. Matulis
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Pristatoma kvaziklasikinė teorija, aprašanti daugiaelektronius parabolinius kvantinius taškus stipriuose magnetiniuose laukuose. Pagrindinės būsenos daugiadalelinė banginė funkcija užrašoma Gauso funkcijos pavidalu ir iš jos gaunama elektronų koreliacinė funkcija, aprašanti Wigner’io kristalizaciją. Atskleidžiama simetrijų konkurencija tarp apskrito kvantinio taško sienelių potencialo ir šešiakampės vidinės Wigner’io kristalo sandaros.


References / Nuorodos


[1] P.A. Maksym, H. Imamura, G.P. Mallon, and H. Aoki, J. Phys.: Condens. Matter 12, R299 (2000),
http://dx.doi.org/10.1088/0953-8984/12/22/201
[2] L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001),
http://dx.doi.org/10.1088/0034-4885/64/6/201
[3] S.M. Reimann, Rev. Mod. Phys. 74, 1283 (2002),
http://dx.doi.org/10.1103/RevModPhys.74.1283
[4] S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996),
http://dx.doi.org/10.1103/PhysRevLett.77.3613
[5] E. Wigner, Phys. Rev. 46, 1002 (1934),
http://dx.doi.org/10.1103/PhysRev.46.1002
[6] H.W. Jiang, R.L. Willett, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 65, 633 (1990),
http://dx.doi.org/10.1103/PhysRevLett.65.633
[7] A. Matulis and F.M. Peeters, Solid State Commun. 117, 655 (2001),
http://dx.doi.org/10.1016/S0038-1098(01)00013-8
[8] E. Anisimovas, A. Matulis, M.B. Tavernier, and F.M. Peeters, Phys. Rev. B 69, 075305 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.075305
[9] E. Anisimovas, A. Matulis, and F.M. Peeters, Phys. Rev. B 70, 195334 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.195334
[10] A. Matulis and E. Anisimovas, J. Phys.: Condens. Matter 17, 3851 (2005),
http://dx.doi.org/10.1088/0953-8984/17/25/012
[11] S.A. Mikhailov, Phys. Rev. B 65, 115312 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.115312
[12] M.B. Tavernier, E. Anisimovas, F.M. Peeters, B. Szafran, J. Adamowski, and S. Bednarek, Phys. Rev. B 68, 205305 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.205305
[13] V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.2667
[14] P.A. Maksym, Phys. Rev. B 53, 10 871 (1996),
http://dx.doi.org/10.1103/PhysRevE.53.871
[15] C. Eckart, Phys. Rev. 47, 552 (1935),
http://dx.doi.org/10.1103/PhysRev.47.552