[PDF]    http://dx.doi.org/10.3952/lithjphys.45409

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 297–305 (2005)


PARAMETERS OF SEMICONDUCTING GAS SENSORS ACCEPTABLE FOR NON-INVASIVE EARLY DETECTION OF WOUND INFECTIONS
A. Galdikasa, Ž. Kanclerisa, A. Olekasa, D. Senulienėa, V. Strazdienėa, A. Šetkusa, R. Bagdonasb, and R. Rimdeikab
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: setkus@pfi.lt
bKaunas Medical University Hospital, Eiveinių 2, LT-50009 Kaunas, Lithuania

Received 27 June 2005

Method of multiexponential decays is used for approximation of the resistive sensor response to steep change in gas composition in the atmosphere. The response of tin and indium oxide thin film sensors is described by a set of the parameters that are included into the output database of the sensor array. The dependence of these parameters on the rates of the surface chemical processes is discussed. The output database is visualised using an original method of a two-dimensional graphical representation that is introduced as a “portrait” of smell. Suitability of these graphical images for identification of the infected substances and infection type is studied. Based on visual inspection of the images, the contamination of chicken meat with bacteria is detectable within several hours after the intentional infection. Capabilities to distinguish between the clinical infections of wounds and to diagnose the infection by smell are studied.
Keywords: metal oxide, electrical properties, odour detection, diagnostics of infection
PACS: 73.25+i, 73.90+f, 81.05.Rm, 81.15.Cd
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


PUSLAIDININKINIŲ DUJŲ JUTIKLIŲ PARAMETRAI, TINKAMI ANKSTYVAJAM NEINVAZINIAM ŽAIZDŲ INFEKCIJOS APIBŪDINIMUI
A. Galdikasa, Ž. Kanclerisa, A. Olekasa, D. Senulienėa, V. Strazdienėa, A. Šetkusa, R. Bagdonasb, R. Rimdeikab
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bKauno medicinos universiteto klinikos, Kaunas, Lietuva

Tirtos galimybės identifikuoti bakterinį užkrėtimą pagal varžinių dujų jutiklių atsaką į lakiuosius produktus, išsiskiriančius iš užkrėstosios terpės. Tuo tikslu plonasluoksnių alavo ir indžio oksido jutiklių aplinkoje yra staigiai pakeičiama atmosferos sudėtis. Atsako į šį pokytį laikinė priklausomybė aprašyta daugiaeksponenčio aproksimavimo metodu ir surasti būdingieji parametrai. Dujų jutiklių komplekto atsakas apibūdintas rastųjų eksponenčių parametrų rinkiniu, iš kurio sudaroma šio atsako duomenų bazė. Aptarta tų parametrų priklausomybė nuo cheminių vyksmų, vykstančių jautriojo sluoksnio paviršiuje, spartos. Taikant originalų metodą, iš atsako duomenų bazės sudarytas dvimatis grafikas, kuris pavadintas „kvapo atvaizdu“. Nagrinėta, kaip šie grafiniai atvaizdai tinka organinių medžiagų infekuotumui ir infekcijos rūšiai nustatyti. Parodyta, kad pagal grafinius atvaizdus vištienos užterštumas bakterijomis nustatomas praėjus kelioms valandoms nuo jos infekavimo. Nagrinėta galimybė pagal kvapą diagnozuoti žaizdos infekciją ir infekcijos tipą klinikinėmis sąlygomis.


References / Nuorodos


[1] E. Llobet, J. Brezmes, X. Vilanova, and J. Sueiras, Qualitative and quantitative anlysis of volatile organic compounds using transient and steady-state responses of tick-film tin oxide gas sensor array, Sens. Actuators B 41, 13–21 (1997),
http://dx.doi.org/10.1016/S0925-4005(97)80272-9
[2] D. Baranauskas, A. Galdikas, A. Mironas, A. Šetkus, and D. Zelenin, Odour identification system based on transient response of one semiconductor gas sensor, Lithuanian J. Phys. 37, 147–154 (1997)
[3] R. Gutierrez-Osuna, H. Troy Nagle, and S.S. Schiffman, Transient response analysis of an electronic nose using multi-exponential models, Sens. Actuators B 61, 170–182(1999),
http://dx.doi.org/10.1016/S0925-4005(99)00290-7
[4] T. Eklöv, P. Mårtensson, and I. Lundström, Selection of variables for interpreting multivariate gas sensor data, Anal. Chim. Acta 381, 221–232 (1999),
http://dx.doi.org/10.1016/S0003-2670(98)00739-9
[5] A. Galdikas, A. Mironas, D. Senulienė, and A. Šetkus, Specific set of the time constants for characterisation of organic volatile compounds in the output of metal oxide sensors, Sens. Actuators B 68, 335–343 (2000),
http://dx.doi.org/10.1016/S0925-4005(00)00454-8
[6] A. Galdikas, A. Mironas, D. Senuliene, V. Strazdiene, A. Setkus, and D. Zelenin, Response time based output metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis, Sens. Actuators B 69, 258–265 (2000),
http://dx.doi.org/10.1016/S0925-4005(00)00505-0
[7] C. Distante, M. Leo, P. Siciliano, and K.C. Persaud, On the study of feature extraction methods for an electronic nose, Sens. Actuators B 87, 274–288 (2002),
http://dx.doi.org/10.1016/S0925-4005(02)00247-2
[8] A. Galdikas, Ž. Kancleris, D. Senulienė, and A. Šetkus, Influence of heterogeneous reaction rate on response kinetics of metal oxide gas sensors: Application to the recognition of an odour, Sens. Actuators B 95, 244–251 (2003),
http://dx.doi.org/10.1016/S0925-4005(03)00434-9
[9] J.W. Gardner, Hyun Woo Shin, and E.L. Hines, An electronic nose system to diagnose illness, Sens. Actuators B 70, 19–24 (2000),
http://dx.doi.org/10.1016/S0925-4005(00)00548-7
[10] C.M. McEntegart, W.R. Penrose, S. Strathmann, and J.R. Stetter, Detection and discrimination of coliform bacteria with gas sensor arrays, Sens. Actuators B 70, 170–176 (2000),
http://dx.doi.org/10.1016/S0925-4005(00)00561-X
[11] N. Magan, A. Pavlou, and I. Chrysanthakis, Milk-sense: A volatile sensing system recognises spoilage bacteria and yeasts in milk, Sens. Actuators B 72, 28–34 (2001),
http://dx.doi.org/10.1016/S0925-4005(00)00621-3
[12] M. Holmberg, F. Gustafsson, E.G. Hornsten, F. Winquist, L.E. Nilsson, L. Ljung, and I. Lundstrom, Bacteria classification based on feature extraction from sensor data, Biotechnol. Tech. 12, 319–324 (1998),
http://dx.doi.org/10.1023/A:1008862617082
[13] A. Šetkus, Heterogeneous reaction rate based description of the response kinetics in metal oxide gas sensors, Sens. Actuators B 87, 348–359 (2002),
http://dx.doi.org/10.1016/S0925-4005(02)00269-1
[14] K. Tittelbach-Helmrich, An integration method for the analysis of multiexponential transient signals, Meas. Sci. Technol. 4, 1323–1329 (1993),
http://dx.doi.org/10.1088/0957-0233/4/12/003
[15] A.A. Istratov and O.F. Vyvenko, Exponential analysis in physical phenomena, Rev. Sci. Instrum. 70, 1233–1257 (1999),
http://dx.doi.org/10.1063/1.1149581
[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1994) p. 120
[17] T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi, and M. Egashira, Odor identification using SnO2-based sensor array, Sens. Actuators B 80, 51–58 (2001),
http://dx.doi.org/10.1016/S0925-4005(01)00885-1
[18] J. Mizsei and S. Ress, Chemical images by artificial olfactory epithelia, Sens. Actuators B 83, 164–168 (2002),
http://dx.doi.org/10.1016/S0925-4005(01)01035-8
[19] A. Šetkus, C. Baratto, E. Comini, G. Faglia, A. Galdikas, Ž. Kancleris, G. Sberveglieri, and D. Senulienė, Influence of metallic impurities on response kinetics in metal oxide thin film gas sensors, Sens. Actuators B 103, 448–456 (2004),
http://dx.doi.org/10.1016/j.snb.2004.05.004