[PDF]
http://dx.doi.org/10.3952/lithjphys.45410
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 273–280 (2005)
Cs AND Pu MIGRATION THROUGH
ENGINEERED AND NATURAL BARRIERS ∗
G. Lujanienėa, S. Motiejūnasb, J. Šapolaitėa,
and Ž. Kamarauskasa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: lujaniene@ar.fi.lt
bRadioactive Waste Management Agency, Algirdo
31, LT-03219 Vilnius, Lithuania
Received 20 June 2005
Performance assessment of radioactive waste
disposal requires modelling of long-term migration of
radionuclides through the engineered barriers and the geological
environment. The chemical complexity of sorption–desorption
processes is usually reduced to integrated parameter distribution
coefficients (Kd). There are a great number of
publications on Kd determination, however, the
existing data on Kd of radionuclides on
different geological materials are for general understanding only
and are not very useful for performance assessment since the
changes of the geological conditions result in a variability of Kd
values by two orders of magnitude. In order to obtain
realistic sorption data sets for safety-relevant radionuclides
present in a cement/concrete based repository some preliminary
studies were carried out. The development of sorption database for
the near-surface repository was started with measurements of
cesium and plutonium Kd values. Samples of loam
available at the Galilaukė site (Quaternary deposits) and Triassic
clay from industrial Šaltiškiai quarry selected as a candidate for
the engineered barrier of Lithuanian near-surface repository were
taken for laboratory investigations. Several experiments were
performed in order to determine the chemical composition of cement
water which could originate from infiltration of precipitation and
from contact of groundwater with concrete. More than 100 batch
sorption experiments were conducted with two clay samples. Cs and
Pu Kd values were determined under a wide range
of geochemical conditions. Changes in the geochemical conditions
resulted in the variability of Cs and Pu Kd
values.
Keywords: Cs, Pu, distribution coefficients (Kd),
clay, surface repository, radioactive waste
PACS: 28.41.Kw, 82.33.-z, 82.80.Ej, 82.80.Jp
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
Cs IR Pu MIGRACIJA PRO
DIRBTINIUS IR GAMTINIUS BARJERUS
G. Lujanienėa, S. Motiejūnasb, J.
Šapolaitėa, Ž. Kamarauskasa
aFizikos institutas, Vilnius, Lietuva
bRadioaktyviųjų atliekų tvarkymo agentūra,
Vilnius, Lietuva
Analizuojant radioaktyviųjų atliekų tvarkymo
saugą, reikalingas ilgalaikis radionuklidų migracijos pro
dirbtinius barjerus bei geologinės aplinkos modeliavimas.
Sudėtingų cheminių gerties–atvirkštinės gerties vyksmų aprašymas
dažniausiai supaprastinamas panaudojant integruotą parametrą –
pasiskirstymo koeficientą (Kd). Daugelyje
duomenų bazių pateikiama informacija apie radionuklidų Kd
vertes skirtingose geologinėse aplinkose. Tačiau ta informacija
paprastai būna labai bendro pobūdžio ir mažai tinka saugos
analizei, nes, kintant geologinėms sąlygoms, Kd
vertės dažnai pakinta net dviem eilėmis. Siekiant nustatyti
realius aktualių radiacinės saugos požiūriu radionuklidų gerties
betono saugykloje parametrus, preliminariai tirta Cs ir Pu
migracija. Pradėtas tų elementų gerties duomenų bazės kūrimas.
Laboratoriniams tyrimams buvo paimti molių, parinktų paviršinės
saugyklos Lietuvoje dirbtiniams barjerams, pavyzdžiai iš
Galilaukės aikštelės (moreninis priemolis) ir pramoninio Šaltiškių
karjero (triaso molis). Buvo atlikta keletas eksperimentų,
siekiant nustatyti betono vandens, atsirandančio kritulių
prasiskverbimo ir gruntinio vandens sąlyčio su betonu atvejais,
cheminę sudėtį. Atlikta daugiau nei 100 gerties eksperimentų,
naudojant dviejų molių pavyzdžius. Cs ir Pu Kd
vertės buvo nustatytos plačiame geocheminių sąlygų intervale.
Geocheminių sąlygų pokyčiai įtakojo Cs ir Pu Kd
verčių kintamumą.
References / Nuorodos
[1] T. Kozaki, H. Sato, S. Sato, and H. Ohashi, Diffusion mechanism
of caesium in compacted montmorillonite, Engin. Geology 54,
223–230 (1999),
http://dx.doi.org/10.1016/S0013-7952(99)00077-0
[2] J.L. Krumhansl, P.V. Brady, and H.L. Anderson, Reactive barriers
for 137Cs retention, J. Contam. Hydrol. 47,
233–240 (2001),
http://dx.doi.org/10.1016/S0169-7722(00)00152-2
[3] Y. Kim and R.J. Kirkpatrick, 23Na and 133Cs
NMR study of cation adsorption on mineral surfaces: Local
environments, dynamics, and effects of mixed cations, Geochim.
Cosmochim. Acta 61, 5199–5208 (1997),
http://dx.doi.org/10.1016/S0016-7037(97)00347-5
[4] T. Onuki, Sorption characteristics of cesium on sandy soils and
their components, Radiochim. Acta 64, 15–21 (1994),
http://dx.doi.org/10.1524/ract.1994.64.34.237
[5] D.T. Richens, The Chemistry of Aqua Ions, Syntheses,
Structure and Reactivity (John Wiley & sons, Chichester,
1997), Appendices 2 and 3, p. 5
[6] K.M. Kemner, D.B. Hunter, P.M. Bertsch, J.P. Kirkland, and W.T.
Elam, Determination of site-specific binding environments of surface
sorbed cesium on clay minerals by Cs-EXAFS, J. Phys. IV France 7,
777–779 (1997),
http://dx.doi.org/10.1051/jp4:1997234
[7] Y. Onodera, T. Iwasaki, T. Ebina, H. Hayashi, K. Torii, A.
Chatterjee, and H. Mimura, Effect of layer charge on fixation of
cesium ions in smectites, J. Contaminant Hydrology 35,
131–140 (1998),
http://dx.doi.org/10.1016/S0169-7722(98)00121-1
[8] The Chemistry of the Actinide Elements, 2nd ed., Vols. 1
and 2, eds. J.J. Katz, G.T. Seaborg, and L.R. Morss (Chapman and
Hall, New York, 1986); The Chemistry of Actinides, Vols.
1–3, ed. B.F. Myasoedov (Mir, Moscow, 1997) [in Russian]
[9] Understanding Variation in Partition Coefficients, Kd
values, United States Office of Air and Radiation EPA Report
402-R-99-004A (1999)
[10] J.D. Farr, R.K. Schulze, and B.D. Honeymann, Aqueous Pu(IV)
sorption on brucite, Radiochim. Acta 88, 675–679 (2000),
http://dx.doi.org/10.1524/ract.2000.88.9-11.675
[11] G.R. Choppin, A.H. Bond, and P.M. Hromadka, Redox speciation of
plutonium, J. Radioanal. Nucl. Chem. 219(2), 203–210 (1997),
http://dx.doi.org/10.1007/BF02038501
[12] A.L. Sanchez, J.W. Murray, and T.H. Sibley, The adsorption of
plutonium IV and V on goethite, Geochim. Cosmochim. Acta 49,
2297–2307 (1985),
http://dx.doi.org/10.1016/0016-7037(85)90230-3
[13] W.L. Keeney-Kennicutt and J.W. Morse, The redox chemistry of
PuO2+ interaction with common mineral surfaces in dilute
solutions and seawater, Geochim. Cosmochim. Acta 49,
2577–2588 (1985),
http://dx.doi.org/10.1016/0016-7037(85)90127-9
[14] M.C. Duff, D.B. Hunter, I.R. Triay, P.M. Bertsch, D.T. Reed,
S.R. Sutton, G. Shea-McCarthy, J. Kitten, P. Eng, S.J. Chipera, and
D.T. Vaniman, Mineral associations and average oxidation states of
sorbed Pu on tuff, Environ. Sci. Tech. 33, 2163–2169 (1999),
http://dx.doi.org/10.1021/es9810686
[15] A. Morgenstern and G.R. Choppin, Kinetics of the oxidation of
Pu(IV) by manganese oxide, Radiochim. Acta 90(2), 69–74
(2002),
http://dx.doi.org/10.1524/ract.2002.90.2_2002.69
[16] G.R. Choppin and A. Morgenstern, in: Plutonium in the
Environment, ed. A. Kudo (Elsevier Science, 2001) pp. 91–104,
http://dx.doi.org/10.1016/S1569-4860(01)80009-7
[17] B.A. Strietelmeier, R.J. Sebring, J.B. Gillow, C.J. Dodge, M.E.
Pansoy-Hjelvik, S.M. Kraus, P.A. Leonard, I.R. Triay, A.J. Francis,
and H.W. Papenguth, Plutonium interaction with a bacterial strain
isolated from the waste isolation pilot plant (WIPP) environment,
American Chemical Society, Division of Environmental Chemistry,
Preprints of Extended Abstracts 36(2) (1996)
[18] P.J. Panak and H. Nitsche, Interaction of aerobic soil bacteria
with plutonium(VI), Radiochim. Acta 89, 499–504 (2001),
http://dx.doi.org/10.1524/ract.2001.89.8.499
[19] http://aaa.am.lt
[20] P.A. Berthard and G.R. Choppin, Separation of actinides in
different oxidation states by solvent extraction, Radiochim. Acta 31,
115 (1985)
[21] M.P. Neu, D.C. Hoffman, K.E. Roberts, H. Nitsche, and R.J.
Silva, Comparison of chemical extractions and laser photoacoustic
spectroscopy for the determination of plutonium species in
near-neutral carbonate solutions, Radiochim. Acta 66,
265–272 (1994),
http://dx.doi.org/10.1524/ract.1994.6667.special-issue.251
[22] H. Nitsche, S.C. Lee, and R.C. Gatti, Determination of
plutonium oxidation states at trace levels pertinent to nuclear
waste disposal, J. Radioanal. Nucl. Chem. 124(1), 171–185
(1988),
http://dx.doi.org/10.1007/BF02035515
[23] C. Poinssot, B. Baeyens, and M.H. Bradburry, Experimental and
modeling studies of caesium sorption on illite, Geochim. Cosmochim.
Acta 63(19/20), 3217–3227 (1999),
http://dx.doi.org/10.1016/S0016-7037(99)00246-X
[24] Characterisation of Materials Suitable for Engineering
Barriers of Near Surface Repository of Radioactive Waste
(Ecofirma, 2004) [in Lithuanian]
[25] H. Bouwer, Simple derivation of the retardation equation and
application to preferential flow and macrodispersion, Ground Water 29,
41–46 (1991),
http://dx.doi.org/10.1111/j.1745-6584.1991.tb00495.x
[26] G. Whelan, J.P. McDonald, and C. Sato, Multimedia
Environmental Pollutant Assessment System (MEPAS): Groundwater
Pathway Formulations, report PNNL-10907 (Pacific Northwest
National Laboratory, Richland, Washington 1996),
http://dx.doi.org/10.2172/266710
[27] A.B. Krasanova, St.N. Kalmykov, N.S. Shcherbina, A.P. Novikov,
and S.B. Clark, Sorption of plutonium and neptunium onto colloidal
Fe- and Mn oxides, in: Advances in Nuclear and Radiochemistry,
eds. S.M. Qaim and H.H. Coenen, extended abstracts of the 6th
International Conference on Nuclear and Radiochemistry (NRC-6),
29.08. – 03.09.2004, Aachen, Schriften der Forschungszentrums
Jülich, Reihe Allgemeines und Interdisziplinäres 3, ISSN
1433-5565, ISBN 3-89336-362-9 (2004) pp. 89–91
[28] J.M. Delany and S.R. Lundeen, The LLNL Thermochemical
Database, Lawrence Livermore National Laboratory Report
UCRL-21658 (1990), p. 150
[29] D. Langmuir, Aqueous Environmental Chemistry (Prentice
Hall, Upper Saddle River, New Jersey, 1997), pp. 486–547