[PDF]    http://dx.doi.org/10.3952/lithjphys.45410

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 273–280 (2005)


Cs AND Pu MIGRATION THROUGH ENGINEERED AND NATURAL BARRIERS
G. Lujanienėa, S. Motiejūnasb, J. Šapolaitėa, and Ž. Kamarauskasa
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: lujaniene@ar.fi.lt
bRadioactive Waste Management Agency, Algirdo 31, LT-03219 Vilnius, Lithuania

Received 20 June 2005

Performance assessment of radioactive waste disposal requires modelling of long-term migration of radionuclides through the engineered barriers and the geological environment. The chemical complexity of sorption–desorption processes is usually reduced to integrated parameter distribution coefficients (Kd). There are a great number of publications on Kd determination, however, the existing data on Kd of radionuclides on different geological materials are for general understanding only and are not very useful for performance assessment since the changes of the geological conditions result in a variability of Kd values by two orders of magnitude. In order to obtain realistic sorption data sets for safety-relevant radionuclides present in a cement/concrete based repository some preliminary studies were carried out. The development of sorption database for the near-surface repository was started with measurements of cesium and plutonium Kd values. Samples of loam available at the Galilaukė site (Quaternary deposits) and Triassic clay from industrial Šaltiškiai quarry selected as a candidate for the engineered barrier of Lithuanian near-surface repository were taken for laboratory investigations. Several experiments were performed in order to determine the chemical composition of cement water which could originate from infiltration of precipitation and from contact of groundwater with concrete. More than 100 batch sorption experiments were conducted with two clay samples. Cs and Pu Kd values were determined under a wide range of geochemical conditions. Changes in the geochemical conditions resulted in the variability of Cs and Pu Kd values.
Keywords: Cs, Pu, distribution coefficients (Kd), clay, surface repository, radioactive waste
PACS: 28.41.Kw, 82.33.-z, 82.80.Ej, 82.80.Jp
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


Cs IR Pu MIGRACIJA PRO DIRBTINIUS IR GAMTINIUS BARJERUS
G. Lujanienėa, S. Motiejūnasb, J. Šapolaitėa, Ž. Kamarauskasa
aFizikos institutas, Vilnius, Lietuva
bRadioaktyviųjų atliekų tvarkymo agentūra, Vilnius, Lietuva

Analizuojant radioaktyviųjų atliekų tvarkymo saugą, reikalingas ilgalaikis radionuklidų migracijos pro dirbtinius barjerus bei geologinės aplinkos modeliavimas. Sudėtingų cheminių gerties–atvirkštinės gerties vyksmų aprašymas dažniausiai supaprastinamas panaudojant integruotą parametrą – pasiskirstymo koeficientą (Kd). Daugelyje duomenų bazių pateikiama informacija apie radionuklidų Kd vertes skirtingose geologinėse aplinkose. Tačiau ta informacija paprastai būna labai bendro pobūdžio ir mažai tinka saugos analizei, nes, kintant geologinėms sąlygoms, Kd vertės dažnai pakinta net dviem eilėmis. Siekiant nustatyti realius aktualių radiacinės saugos požiūriu radionuklidų gerties betono saugykloje parametrus, preliminariai tirta Cs ir Pu migracija. Pradėtas tų elementų gerties duomenų bazės kūrimas. Laboratoriniams tyrimams buvo paimti molių, parinktų paviršinės saugyklos Lietuvoje dirbtiniams barjerams, pavyzdžiai iš Galilaukės aikštelės (moreninis priemolis) ir pramoninio Šaltiškių karjero (triaso molis). Buvo atlikta keletas eksperimentų, siekiant nustatyti betono vandens, atsirandančio kritulių prasiskverbimo ir gruntinio vandens sąlyčio su betonu atvejais, cheminę sudėtį. Atlikta daugiau nei 100 gerties eksperimentų, naudojant dviejų molių pavyzdžius. Cs ir Pu Kd vertės buvo nustatytos plačiame geocheminių sąlygų intervale. Geocheminių sąlygų pokyčiai įtakojo Cs ir Pu Kd verčių kintamumą.


References / Nuorodos


[1] T. Kozaki, H. Sato, S. Sato, and H. Ohashi, Diffusion mechanism of caesium in compacted montmorillonite, Engin. Geology 54, 223–230 (1999),
http://dx.doi.org/10.1016/S0013-7952(99)00077-0
[2] J.L. Krumhansl, P.V. Brady, and H.L. Anderson, Reactive barriers for 137Cs retention, J. Contam. Hydrol. 47, 233–240 (2001),
http://dx.doi.org/10.1016/S0169-7722(00)00152-2
[3] Y. Kim and R.J. Kirkpatrick, 23Na and 133Cs NMR study of cation adsorption on mineral surfaces: Local environments, dynamics, and effects of mixed cations, Geochim. Cosmochim. Acta 61, 5199–5208 (1997),
http://dx.doi.org/10.1016/S0016-7037(97)00347-5
[4] T. Onuki, Sorption characteristics of cesium on sandy soils and their components, Radiochim. Acta 64, 15–21 (1994),
http://dx.doi.org/10.1524/ract.1994.64.34.237
[5] D.T. Richens, The Chemistry of Aqua Ions, Syntheses, Structure and Reactivity (John Wiley & sons, Chichester, 1997), Appendices 2 and 3, p. 5
[6] K.M. Kemner, D.B. Hunter, P.M. Bertsch, J.P. Kirkland, and W.T. Elam, Determination of site-specific binding environments of surface sorbed cesium on clay minerals by Cs-EXAFS, J. Phys. IV France 7, 777–779 (1997),
http://dx.doi.org/10.1051/jp4:1997234
[7] Y. Onodera, T. Iwasaki, T. Ebina, H. Hayashi, K. Torii, A. Chatterjee, and H. Mimura, Effect of layer charge on fixation of cesium ions in smectites, J. Contaminant Hydrology 35, 131–140 (1998),
http://dx.doi.org/10.1016/S0169-7722(98)00121-1
[8] The Chemistry of the Actinide Elements, 2nd ed., Vols. 1 and 2, eds. J.J. Katz, G.T. Seaborg, and L.R. Morss (Chapman and Hall, New York, 1986); The Chemistry of Actinides, Vols. 1–3, ed. B.F. Myasoedov (Mir, Moscow, 1997) [in Russian]
[9] Understanding Variation in Partition Coefficients, Kd values, United States Office of Air and Radiation EPA Report 402-R-99-004A (1999)
[10] J.D. Farr, R.K. Schulze, and B.D. Honeymann, Aqueous Pu(IV) sorption on brucite, Radiochim. Acta 88, 675–679 (2000),
http://dx.doi.org/10.1524/ract.2000.88.9-11.675
[11] G.R. Choppin, A.H. Bond, and P.M. Hromadka, Redox speciation of plutonium, J. Radioanal. Nucl. Chem. 219(2), 203–210 (1997),
http://dx.doi.org/10.1007/BF02038501
[12] A.L. Sanchez, J.W. Murray, and T.H. Sibley, The adsorption of plutonium IV and V on goethite, Geochim. Cosmochim. Acta 49, 2297–2307 (1985),
http://dx.doi.org/10.1016/0016-7037(85)90230-3
[13] W.L. Keeney-Kennicutt and J.W. Morse, The redox chemistry of PuO2+ interaction with common mineral surfaces in dilute solutions and seawater, Geochim. Cosmochim. Acta 49, 2577–2588 (1985),
http://dx.doi.org/10.1016/0016-7037(85)90127-9
[14] M.C. Duff, D.B. Hunter, I.R. Triay, P.M. Bertsch, D.T. Reed, S.R. Sutton, G. Shea-McCarthy, J. Kitten, P. Eng, S.J. Chipera, and D.T. Vaniman, Mineral associations and average oxidation states of sorbed Pu on tuff, Environ. Sci. Tech. 33, 2163–2169 (1999),
http://dx.doi.org/10.1021/es9810686
[15] A. Morgenstern and G.R. Choppin, Kinetics of the oxidation of Pu(IV) by manganese oxide, Radiochim. Acta 90(2), 69–74 (2002),
http://dx.doi.org/10.1524/ract.2002.90.2_2002.69
[16] G.R. Choppin and A. Morgenstern, in: Plutonium in the Environment, ed. A. Kudo (Elsevier Science, 2001) pp. 91–104,
http://dx.doi.org/10.1016/S1569-4860(01)80009-7
[17] B.A. Strietelmeier, R.J. Sebring, J.B. Gillow, C.J. Dodge, M.E. Pansoy-Hjelvik, S.M. Kraus, P.A. Leonard, I.R. Triay, A.J. Francis, and H.W. Papenguth, Plutonium interaction with a bacterial strain isolated from the waste isolation pilot plant (WIPP) environment, American Chemical Society, Division of Environmental Chemistry, Preprints of Extended Abstracts 36(2) (1996)
[18] P.J. Panak and H. Nitsche, Interaction of aerobic soil bacteria with plutonium(VI), Radiochim. Acta 89, 499–504 (2001),
http://dx.doi.org/10.1524/ract.2001.89.8.499
[19] http://aaa.am.lt
[20] P.A. Berthard and G.R. Choppin, Separation of actinides in different oxidation states by solvent extraction, Radiochim. Acta 31, 115 (1985)
[21] M.P. Neu, D.C. Hoffman, K.E. Roberts, H. Nitsche, and R.J. Silva, Comparison of chemical extractions and laser photoacoustic spectroscopy for the determination of plutonium species in near-neutral carbonate solutions, Radiochim. Acta 66, 265–272 (1994),
http://dx.doi.org/10.1524/ract.1994.6667.special-issue.251
[22] H. Nitsche, S.C. Lee, and R.C. Gatti, Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal, J. Radioanal. Nucl. Chem. 124(1), 171–185 (1988),
http://dx.doi.org/10.1007/BF02035515
[23] C. Poinssot, B. Baeyens, and M.H. Bradburry, Experimental and modeling studies of caesium sorption on illite, Geochim. Cosmochim. Acta 63(19/20), 3217–3227 (1999),
http://dx.doi.org/10.1016/S0016-7037(99)00246-X
[24] Characterisation of Materials Suitable for Engineering Barriers of Near Surface Repository of Radioactive Waste (Ecofirma, 2004) [in Lithuanian]
[25] H. Bouwer, Simple derivation of the retardation equation and application to preferential flow and macrodispersion, Ground Water 29, 41–46 (1991),
http://dx.doi.org/10.1111/j.1745-6584.1991.tb00495.x
[26] G. Whelan, J.P. McDonald, and C. Sato, Multimedia Environmental Pollutant Assessment System (MEPAS): Groundwater Pathway Formulations, report PNNL-10907 (Pacific Northwest National Laboratory, Richland, Washington 1996),
http://dx.doi.org/10.2172/266710
[27] A.B. Krasanova, St.N. Kalmykov, N.S. Shcherbina, A.P. Novikov, and S.B. Clark, Sorption of plutonium and neptunium onto colloidal Fe- and Mn oxides, in: Advances in Nuclear and Radiochemistry, eds. S.M. Qaim and H.H. Coenen, extended abstracts of the 6th International Conference on Nuclear and Radiochemistry (NRC-6), 29.08. – 03.09.2004, Aachen, Schriften der Forschungszentrums Jülich, Reihe Allgemeines und Interdisziplinäres 3, ISSN 1433-5565, ISBN 3-89336-362-9 (2004) pp. 89–91
[28] J.M. Delany and S.R. Lundeen, The LLNL Thermochemical Database, Lawrence Livermore National Laboratory Report UCRL-21658 (1990), p. 150
[29] D. Langmuir, Aqueous Environmental Chemistry (Prentice Hall, Upper Saddle River, New Jersey, 1997), pp. 486–547