[PDF]
http://dx.doi.org/10.3952/lithjphys.45412
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 307–315 (2005)
IDENTIFICATION OF CHLOROPHYLL
MOLECULES IN PERIPHERAL LIGHT HARVESTING COMPLEX LHC II ∗
Š. Vaitekonis, G. Trinkūnas, and L. Valkūnas
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: sarunas@ar.fi.lt
Received 27 June 2005
Chlorophyll site excitation energies of the
peripheral plant light-harvesting complex (LHC-II) have been
determined by simulating the steady-state absorption and circular
dichroism spectra and using new structural data. By applying the
genetic algorithm search procedure it has been found that the fit
to circular dichroism spectra is critical in narrowing the space
of possible solutions. The obtained chlorophyll energy assignment
has been verified by the Monte Carlo simulations of the excitation
annihilation kinetics. It suggests that the chlorophyll a dimers
a611-a612, a613-a614, and a602-a603 constitute the sites for the
energy migration across the peripheral plant light-harvesting
antenna.
Keywords: light-harvesting, LHC-II, genetic algorithm,
exciton
PACS: 92.20.Lw, 71.35.-y, 87.15.Aa.
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
CHLOROFILO MOLEKULIŲ
IDENTIFIKACIJA PERIFERINIAME ŠVIESĄ SURENKANČIAME KOMPLEKSE LHC
II
Š. Vaitekonis, G. Trinkūnas, L. Valkūnas
Fizikos institutas, Vilnius, Lietuva
Modeliuojant nuostoviuosius sugerties ir
cirkuliarinio dichroizmo spektrus, panaudojus naujus struktūrinius
duomenis, įvertintos periferinio šviesą surenkančio komplekso
(LHC-II) chlorofilo molekulių sužadinimo energijos. Taikant
genetinio algoritmo paieškos procedūrą, pastebėta, kad sprendinių
paieškos erdvę labiausiai siaurina teorinio ir eksperimentinio
cirkuliarinio dichroizmo spektrų sutapimas. Rastos chlorofilo
molekulių sužadinimo energijos vertės patikrintos Monte Carlo
metodu modeliuojant sužadinimo anihiliacijos kinetikos būdus.
Pastebėta, kad chlorofilo a molekulių dimerai a611–a612,
a613–a614 ir a602–a603 yra mazgai, kuriais periferinėje šviesą
surenkančioje antenoje vyksta energijos migracija.
References / Nuorodos
[1] W. Kühlbrandt, D.N. Wang, and Y. Fujiyoshi, Atomic model of
plant light-harvesting complex by electron crystallography, Nature 367,
614–621 (1994),
http://dx.doi.org/10.1038/367614a0
[2] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, and
W. Chang, Crystal structure of spinach major light-harvesting
complex at 2.72 Å resolution, Nature 428, 287–292 (2004),
http://dx.doi.org/10.1038/nature02373
[3] H. van Amerongen and R. van Grondelle, Understanding the energy
transfer function of LHCII, the major light-harvesting complex of
green plants, J. Phys. Chem. B 105, 604–617 (2001),
http://dx.doi.org/10.1021/jp0028406
[4] R. Remelli, C. Varotto, D. Sandona, R. Croce, and R. Bassi,
Chlorophyll binding to monomeric light-harvesting complex. A
mutation analysis of chromophore-binding residues, J. Biol. Chem. 274,
33510–33521 (1999),
http://dx.doi.org/10.1074/jbc.274.47.33510
[5] H. Rogl and W. Kühlbrandt, Mutant trimers of light-harvesting
complex II exhibit altered pigment content and spectroscopic
features, Biochemistry 38, 16214–16222 (1999),
http://dx.doi.org/10.1021/bi990739p
[6] C. Yang, K. Kosemund, C. Cornet, and H. Paulsen, Exchange of
pigment-binding amino acids in light-harvesting chlorophyll a/b
protein, Biochemistry 38, 16205–16213 (1999),
http://dx.doi.org/10.1021/bi990738x
[7] H. Rogl, R. Schödel, H. Lokstein, W. Kühlbrandt, and A.
Schubert, Assignment of spectral substructures to pigment-binding
sites in higher plant light-harvesting complex LHC-II, Biochemistry
41, 2281–2287 (2002),
http://dx.doi.org/10.1021/bi015875k
[8] Th. Renger and V. May, Simulations of frequency domain spectra:
Structure-function relationships in photosynthetic pigment–protein
complexes, Phys. Rev. Lett. 84, 5228–5231 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.5228
[9] E.I. Iseri and D. Gülen, Chlorophyll transition dipole moment
orientations and pathways for flow of excitation energy among the
chlorophylls of the major plant antenna, LHCII, Eur. Biophys. J. 30,
344–353 (2001),
http://dx.doi.org/10.1007/s002490100151
[10] V. Novoderezhkin, J.M. Salverda, H. van Amerongen, and R. van
Grondelle, Exciton modeling of energy-transfer dynamics in the LHCII
complex of higher plants: A Redfield theory approach, J. Phys. Chem.
B 107, 1893–1912 (2003),
http://dx.doi.org/10.1021/jp027003d
[11] V. Novoderezhkin, M. Palacios, H. van Amerongen, and R. van
Grondelle, Energy-transfer dynamics in the LHCII complex of higher
plants: Modified Redfield approach, J. Phys. Chem. B 108,
10363–10375 (2004),
http://dx.doi.org/10.1021/jp0496001
[12] G. Trinkunas, J.P. Connelly, M.G. Müller, L. Valkunas, and A.R.
Holzwarth, Model for the excitation dynamics in the light-harvesting
complex II from higher plants, J. Phys. Chem. B 101,
7313–7320 (1997),
http://dx.doi.org/10.1021/jp963968j
[13] T. Bittner, G.P. Wiederrecht, K.-D. Irrgang, G. Renger, and
M.R. Wasielewski, Femtosecond transient absorption spectroscopy on
the light-harvesting Chl a/b protein complex of photosystem II at
room temperature and 12 K, Chem. Phys. 194, 311–322 (1995),
http://dx.doi.org/10.1016/0301-0104(95)00045-P
[14] H.M. Visser, F.J. Kleima, I.H.M. van Stokkum, R. van Grondelle,
and H. van Amerongen, Probing the many energy-transfer processes in
the photosynthetic light-harvesting complex II at 77 K using
energy-selective sub-picosecond transient absorption spectroscopy,
J. Chem. Phys. 210, 297–312 (1996),
http://dx.doi.org/10.1016/0301-0104(96)00092-4
[15] F.J. Kleima, C.C. Gradinaru, F. Calkoen, I.H.M. van Stokkum, R.
van Grondelle, and H. van Amerongen, Energy transfer in LHCII
monomers at 77 K studied by sub-picosecond transient absorption
spectroscopy, Biochemistry 36, 15262–15268 (1997),
http://dx.doi.org/10.1021/bi9716480
[16] C.C. Gradinaru, S. Özdemir, D. Gülen, I.H.M. van Stokkum, R.
van Grondelle, and H. van Amerongen, The flow of excitation in LHCII
monomers. Implications for the structural model of the major plant
antenna, Biophys. J. 75, 3064–3077 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)77747-1
[17] C.C. Gradinaru, I.H.M. van Stokkum, A.A. Pascal, R. van
Grondelle, and H. van Amerongen, Identifying the pathways of energy
transfer between carotenoids and chlorophylls in LHCII and CP29. A
multicolor, femtosecond pump-probe study, J. Phys. Chem. B 104,
9330–9342 (2000),
http://dx.doi.org/10.1021/jp001752i
[18] M. Du, X. Xie, L. Mets, and G.R. Fleming, Direct observation of
ultrafast energy-transfer processes in light-harvesting complex II,
J. Phys. Chem. 98, 4736–4741 (1994),
http://dx.doi.org/10.1021/j100068a041
[19] T. Bittner, K.-D. Irrgang, G. Renger, and M.R. Wasielewski,
Ultrafast excitation energy transfer and exciton–exciton
annihilation processes in isolated light-harvesting complexes of
photosystem II (LHC-II) from spinach, J. Phys. Chem. 98,
11821–11826 (1994),
http://dx.doi.org/10.1021/j100097a004
[20] J.P. Connelly, M.G. Müller, M. Hucke, G. Gatzen, C.W.
Mullineaux, A.V. Ruban, P. Horton, and A.R. Holzwarth, Ultrafast
spectroscopy of trimeric light-harvesting complex II from higher
plants, J. Phys. Chem. B 101, 1902–1909 (1997),
http://dx.doi.org/10.1021/jp9619651
[21] R. Agarwal, B.P. Krueger, G.D. Scholes, M. Yang, J. Yom, L.
Mets, and G.R. Fleming, Ultrafast energy transfer in LHC-II revealed
by three-pulse photon echo peak shift measurements, J. Phys. Chem. B
104, 2908–2918 (2000),
http://dx.doi.org/10.1021/jp9915578
[22] J.M. Salverda, M. Vengris, B.P. Krueger, G.D. Scholes, A.R.
Czarnoleski, V. Novoderezhkin, H. van Amerongen, and R. van
Grondelle, Energy transfer in light-harvesting complexes LHCII and
CP29 of spinach studied with three-pulse echo peak shift and
transient grating, Biophys. J. 84, 450–465 (2003),
http://dx.doi.org/10.1016/S0006-3495(03)74865-6
[23] A.G. Redfield, The theory of relaxation processes, Adv. Magn.
Reson. 1, 1 (1965),
http://dx.doi.org/10.1016/B978-1-4832-3114-3.50007-6
[24] W.T. Pollard, A.K. Felts, and R.A. Friesner, The Redfield
equation in condensed phase quantum dynamics, Adv. Chem. Phys.,
XCIII, 77, New Methods in Computational Mechanics, eds. I.
Prigogine and S.A. Rice (ISBN: 0-471-19127-2, 1996),
http://dx.doi.org/10.1002/9780470141526.ch3
[25] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R. van
Grondelle, Excitation dynamics in the LHCII complex of higher
plants: Modeling based on the 2.72 crystal structure, J. Phys. Chem.
B 109, 10493–10504 (2005),
http://dx.doi.org/10.1021/jp044082f
[26] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic
Excitons (World Scientific Co., Singapore, 2000),
http://dx.doi.org/10.1142/3609
[27] M.A.M.J. van Zandvoort, D. Wrobel, P. Lettinga, G. van Ginkel,
and Y.K. Levine, The orientation of the transition dipole moments of
chlorophyll a and pheophytin a in their molecular frame,
Photochem. Photobiol. 62, 299–308 (1995),
http://dx.doi.org/10.1111/j.1751-1097.1995.tb05272.x
[28] R.S. Knox, and H. van Amerongen, Refractive index dependence of
the Förster resonance excitation transfer rate, J. Phys. Chem. B 206,
5289–5293 (2002),
http://dx.doi.org/10.1021/jp013927+
[29] G. Cinque, R. Croce, and R. Bassi, Absorption spectra of
chlorophyll a and b in Lhcb protein environment,
Photosynth. Res. 64, 233–242 (2000),
http://dx.doi.org/10.1023/A:1006467617697
[30] A.V. Ruban, F. Calkoen, S.L.S. Kwa, R. van Grondelle, P.
Horton, and J.P. Dekker, Characterisation of LHC-II in the
aggregated state by linear and circular dichroism spectroscopy,
Biochim. Biophys. Acta 1321, 61–70 (1997),
http://dx.doi.org/10.1016/S0005-2728(97)00047-9
[31] J.H. Holland, Adaptation in Natural and Artificial Systems
(University of Michigan Press, Ann Arbor, 1975)
[32] S. Vaitekonis, G. Trinkunas, and L. Valkunas, Red chlorophylls
in the exciton model of Photosystem I, Photosynth. Res. (2005) (in
press),
http://dx.doi.org/10.1007/s11120-005-2747-x
[33] D.E. Goldberg, Genetic Algorythms in Search, Optimization,
and Machine Learning (Addison-Wesley, Reading, Massachusetts,
1989)
[34] C. Houssier and K. Sauer, Circular dichroism and magnetic
circular dichroism of the chlorophyll and protochlorophyll pigments,
J. Am. Chem. Soc. 92(4), 779–791 (1970),
http://dx.doi.org/10.1021/ja00707a007
[35] K. Krebs, M.P. Pfannmuller, B. Wehefritz, and H. Hinrichsen,
Finite-size scaling studies of one-dimensional reaction-diffusion
systems. Part I. Analytical results, J. Stat. Phys. 78,
1429–1470 (1995),
http://dx.doi.org/10.1007/BF02180138
[36] K. Krebs, M.P. Pfannmuller, H. Simon, and B. Wehefritz,
Finite-size scaling studies of one-dimensional reaction-diffusion
systems. Part II. Numerical methods, J. Stat. Phys. 78,
1471–1491 (1995),
http://dx.doi.org/10.1007/BF02180139
[37] Th. Forster, in: Modern Quantum Chemistry, Part II, ed.
O. Sinanoglu (Academic Press, New York 1965)
[38] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods (Methuen,
London, 1964),
http://dx.doi.org/10.1007/978-94-009-5819-7
[39] V. Barzda, V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van
Amerongen, R. van Grondelle, and L. Valkunas, Singlet–singlet
annihilation kinetics in aggregates and trimers of LHCII, Biophys.
J. 80, 2409–2421 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)76210-8