[PDF]    http://dx.doi.org/10.3952/lithjphys.45412

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 307–315 (2005)


IDENTIFICATION OF CHLOROPHYLL MOLECULES IN PERIPHERAL LIGHT HARVESTING COMPLEX LHC II
Š. Vaitekonis, G. Trinkūnas, and L. Valkūnas
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: sarunas@ar.fi.lt

Received 27 June 2005

Chlorophyll site excitation energies of the peripheral plant light-harvesting complex (LHC-II) have been determined by simulating the steady-state absorption and circular dichroism spectra and using new structural data. By applying the genetic algorithm search procedure it has been found that the fit to circular dichroism spectra is critical in narrowing the space of possible solutions. The obtained chlorophyll energy assignment has been verified by the Monte Carlo simulations of the excitation annihilation kinetics. It suggests that the chlorophyll a dimers a611-a612, a613-a614, and a602-a603 constitute the sites for the energy migration across the peripheral plant light-harvesting antenna.
Keywords: light-harvesting, LHC-II, genetic algorithm, exciton
PACS: 92.20.Lw, 71.35.-y, 87.15.Aa.
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


CHLOROFILO MOLEKULIŲ IDENTIFIKACIJA PERIFERINIAME ŠVIESĄ SURENKANČIAME KOMPLEKSE LHC II
Š. Vaitekonis, G. Trinkūnas, L. Valkūnas
Fizikos institutas, Vilnius, Lietuva


Modeliuojant nuostoviuosius sugerties ir cirkuliarinio dichroizmo spektrus, panaudojus naujus struktūrinius duomenis, įvertintos periferinio šviesą surenkančio komplekso (LHC-II) chlorofilo molekulių sužadinimo energijos. Taikant genetinio algoritmo paieškos procedūrą, pastebėta, kad sprendinių paieškos erdvę labiausiai siaurina teorinio ir eksperimentinio cirkuliarinio dichroizmo spektrų sutapimas. Rastos chlorofilo molekulių sužadinimo energijos vertės patikrintos Monte Carlo metodu modeliuojant sužadinimo anihiliacijos kinetikos būdus. Pastebėta, kad chlorofilo a molekulių dimerai a611–a612, a613–a614 ir a602–a603 yra mazgai, kuriais periferinėje šviesą surenkančioje antenoje vyksta energijos migracija.


References / Nuorodos


[1] W. Kühlbrandt, D.N. Wang, and Y. Fujiyoshi, Atomic model of plant light-harvesting complex by electron crystallography, Nature 367, 614–621 (1994),
http://dx.doi.org/10.1038/367614a0
[2] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, and W. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution, Nature 428, 287–292 (2004),
http://dx.doi.org/10.1038/nature02373
[3] H. van Amerongen and R. van Grondelle, Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants, J. Phys. Chem. B 105, 604–617 (2001),
http://dx.doi.org/10.1021/jp0028406
[4] R. Remelli, C. Varotto, D. Sandona, R. Croce, and R. Bassi, Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues, J. Biol. Chem. 274, 33510–33521 (1999),
http://dx.doi.org/10.1074/jbc.274.47.33510
[5] H. Rogl and W. Kühlbrandt, Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features, Biochemistry 38, 16214–16222 (1999),
http://dx.doi.org/10.1021/bi990739p
[6] C. Yang, K. Kosemund, C. Cornet, and H. Paulsen, Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein, Biochemistry 38, 16205–16213 (1999),
http://dx.doi.org/10.1021/bi990738x
[7] H. Rogl, R. Schödel, H. Lokstein, W. Kühlbrandt, and A. Schubert, Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II, Biochemistry 41, 2281–2287 (2002),
http://dx.doi.org/10.1021/bi015875k
[8] Th. Renger and V. May, Simulations of frequency domain spectra: Structure-function relationships in photosynthetic pigment–protein complexes, Phys. Rev. Lett. 84, 5228–5231 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.5228
[9] E.I. Iseri and D. Gülen, Chlorophyll transition dipole moment orientations and pathways for flow of excitation energy among the chlorophylls of the major plant antenna, LHCII, Eur. Biophys. J. 30, 344–353 (2001),
http://dx.doi.org/10.1007/s002490100151
[10] V. Novoderezhkin, J.M. Salverda, H. van Amerongen, and R. van Grondelle, Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A Redfield theory approach, J. Phys. Chem. B 107, 1893–1912 (2003),
http://dx.doi.org/10.1021/jp027003d
[11] V. Novoderezhkin, M. Palacios, H. van Amerongen, and R. van Grondelle, Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach, J. Phys. Chem. B 108, 10363–10375 (2004),
http://dx.doi.org/10.1021/jp0496001
[12] G. Trinkunas, J.P. Connelly, M.G. Müller, L. Valkunas, and A.R. Holzwarth, Model for the excitation dynamics in the light-harvesting complex II from higher plants, J. Phys. Chem. B 101, 7313–7320 (1997),
http://dx.doi.org/10.1021/jp963968j
[13] T. Bittner, G.P. Wiederrecht, K.-D. Irrgang, G. Renger, and M.R. Wasielewski, Femtosecond transient absorption spectroscopy on the light-harvesting Chl a/b protein complex of photosystem II at room temperature and 12 K, Chem. Phys. 194, 311–322 (1995),
http://dx.doi.org/10.1016/0301-0104(95)00045-P
[14] H.M. Visser, F.J. Kleima, I.H.M. van Stokkum, R. van Grondelle, and H. van Amerongen, Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy, J. Chem. Phys. 210, 297–312 (1996),
http://dx.doi.org/10.1016/0301-0104(96)00092-4
[15] F.J. Kleima, C.C. Gradinaru, F. Calkoen, I.H.M. van Stokkum, R. van Grondelle, and H. van Amerongen, Energy transfer in LHCII monomers at 77 K studied by sub-picosecond transient absorption spectroscopy, Biochemistry 36, 15262–15268 (1997),
http://dx.doi.org/10.1021/bi9716480
[16] C.C. Gradinaru, S. Özdemir, D. Gülen, I.H.M. van Stokkum, R. van Grondelle, and H. van Amerongen, The flow of excitation in LHCII monomers. Implications for the structural model of the major plant antenna, Biophys. J. 75, 3064–3077 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)77747-1
[17] C.C. Gradinaru, I.H.M. van Stokkum, A.A. Pascal, R. van Grondelle, and H. van Amerongen, Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump-probe study, J. Phys. Chem. B 104, 9330–9342 (2000),
http://dx.doi.org/10.1021/jp001752i
[18] M. Du, X. Xie, L. Mets, and G.R. Fleming, Direct observation of ultrafast energy-transfer processes in light-harvesting complex II, J. Phys. Chem. 98, 4736–4741 (1994),
http://dx.doi.org/10.1021/j100068a041
[19] T. Bittner, K.-D. Irrgang, G. Renger, and M.R. Wasielewski, Ultrafast excitation energy transfer and exciton–exciton annihilation processes in isolated light-harvesting complexes of photosystem II (LHC-II) from spinach, J. Phys. Chem. 98, 11821–11826 (1994),
http://dx.doi.org/10.1021/j100097a004
[20] J.P. Connelly, M.G. Müller, M. Hucke, G. Gatzen, C.W. Mullineaux, A.V. Ruban, P. Horton, and A.R. Holzwarth, Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants, J. Phys. Chem. B 101, 1902–1909 (1997),
http://dx.doi.org/10.1021/jp9619651
[21] R. Agarwal, B.P. Krueger, G.D. Scholes, M. Yang, J. Yom, L. Mets, and G.R. Fleming, Ultrafast energy transfer in LHC-II revealed by three-pulse photon echo peak shift measurements, J. Phys. Chem. B 104, 2908–2918 (2000),
http://dx.doi.org/10.1021/jp9915578
[22] J.M. Salverda, M. Vengris, B.P. Krueger, G.D. Scholes, A.R. Czarnoleski, V. Novoderezhkin, H. van Amerongen, and R. van Grondelle, Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three-pulse echo peak shift and transient grating, Biophys. J. 84, 450–465 (2003),
http://dx.doi.org/10.1016/S0006-3495(03)74865-6
[23] A.G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965),
http://dx.doi.org/10.1016/B978-1-4832-3114-3.50007-6
[24] W.T. Pollard, A.K. Felts, and R.A. Friesner, The Redfield equation in condensed phase quantum dynamics, Adv. Chem. Phys., XCIII, 77, New Methods in Computational Mechanics, eds. I. Prigogine and S.A. Rice (ISBN: 0-471-19127-2, 1996),
http://dx.doi.org/10.1002/9780470141526.ch3
[25] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R. van Grondelle, Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 crystal structure, J. Phys. Chem. B 109, 10493–10504 (2005),
http://dx.doi.org/10.1021/jp044082f
[26] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific Co., Singapore, 2000),
http://dx.doi.org/10.1142/3609
[27] M.A.M.J. van Zandvoort, D. Wrobel, P. Lettinga, G. van Ginkel, and Y.K. Levine, The orientation of the transition dipole moments of chlorophyll a and pheophytin a in their molecular frame, Photochem. Photobiol. 62, 299–308 (1995),
http://dx.doi.org/10.1111/j.1751-1097.1995.tb05272.x
[28] R.S. Knox, and H. van Amerongen, Refractive index dependence of the Förster resonance excitation transfer rate, J. Phys. Chem. B 206, 5289–5293 (2002),
http://dx.doi.org/10.1021/jp013927+
[29] G. Cinque, R. Croce, and R. Bassi, Absorption spectra of chlorophyll a and b in Lhcb protein environment, Photosynth. Res. 64, 233–242 (2000),
http://dx.doi.org/10.1023/A:1006467617697
[30] A.V. Ruban, F. Calkoen, S.L.S. Kwa, R. van Grondelle, P. Horton, and J.P. Dekker, Characterisation of LHC-II in the aggregated state by linear and circular dichroism spectroscopy, Biochim. Biophys. Acta 1321, 61–70 (1997),
http://dx.doi.org/10.1016/S0005-2728(97)00047-9
[31] J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)
[32] S. Vaitekonis, G. Trinkunas, and L. Valkunas, Red chlorophylls in the exciton model of Photosystem I, Photosynth. Res. (2005) (in press),
http://dx.doi.org/10.1007/s11120-005-2747-x
[33] D.E. Goldberg, Genetic Algorythms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Massachusetts, 1989)
[34] C. Houssier and K. Sauer, Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments, J. Am. Chem. Soc. 92(4), 779–791 (1970),
http://dx.doi.org/10.1021/ja00707a007
[35] K. Krebs, M.P. Pfannmuller, B. Wehefritz, and H. Hinrichsen, Finite-size scaling studies of one-dimensional reaction-diffusion systems. Part I. Analytical results, J. Stat. Phys. 78, 1429–1470 (1995),
http://dx.doi.org/10.1007/BF02180138
[36] K. Krebs, M.P. Pfannmuller, H. Simon, and B. Wehefritz, Finite-size scaling studies of one-dimensional reaction-diffusion systems. Part II. Numerical methods, J. Stat. Phys. 78, 1471–1491 (1995),
http://dx.doi.org/10.1007/BF02180139
[37] Th. Forster, in: Modern Quantum Chemistry, Part II, ed. O. Sinanoglu (Academic Press, New York 1965)
[38] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods (Methuen, London, 1964),
http://dx.doi.org/10.1007/978-94-009-5819-7
[39] V. Barzda, V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas, Singlet–singlet annihilation kinetics in aggregates and trimers of LHCII, Biophys. J. 80, 2409–2421 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)76210-8