[PDF]    http://dx.doi.org/10.3952/lithjphys.45509

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 397–409 (2005)


PIEZOELECTRIC MODEL FOR ACTIVE PROTON TRANSPORT IN BACTERIORHODOPSIN
P.B. Kietisa,b, P. Saudargasa, and L. Valkūnasa,c
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: saudargas@ar.fi.lt
bDepartment of Radiophysics of Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
cDepartment of Theoretical Physics of Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania

Received 9 June 2005

Bacteriorhodopsin is a photoactive protein performing the transmembrane proton pumping through the purple membrane of Halobacterium salinarum. Experimental results of the electrical studies of the dried purple membrane films excited by short light pulses are presented. The time constant of the photoelectric response of the purple membrane film corresponds to the optically detectable L intermediate lifetime that is tens of micro seconds. Absence of the positive part of the photoelectric response signal in the time range of tens of microseconds under acidic conditions supports the assumption about the possibility of blockage of the proton transfer. The polarization field is a stimulating factor of the active proton transfer according to the assumption of the suggested two-state model. The mechanical–electrical properties of the dipole materials and the piezoelectric effect of the hydrogen bonds are discussed in the context of the zwitterionic state of the Schiff base and its counter ion Asp85. On the basis of the recent crystallographic data and molecular dynamics simulations it is concluded that the polarization of the Schiff base is a consequence of the mechanically strained hydrogen bonds caused by the retinal photoisomerization. The reorganized H-bond network impedes the proton way back, and the proton accomplishes work while moving in the external circuit.
Keywords: bacteriorhodopsin, photoresponse, piezoelectric effect
PACS: 80, 87.14, 87.15.-v, 87.80
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


AKTYVIOJO PROTONŲ TRANSPORTO BAKTERIORODOPSINE PJEZOELEKTRINIS MODELIS
P.B. Kietisa,b, P. Saudargasa, L. Valkūnasa,b
aFizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva

Transmembraninis baltymas bakteriorodopsinas (BR), konvertuodamas šviesos energiją į kitas energijos formas, vykdo aktyvų protonų transportą per purpurinę membraną (PM) Halobacterium salinarum bakterijose. Čia pristatomi fotoelektriniai sausų PM plėvelių tyrimai. Nanosekundiniu lazerio impulsu sužadintas fotoelektrinis atsakas (PERS) yra priskiriamas protono pernašai BR aktyviajame centre. Pateikiame dviejų potencialinių duobių modelį, aiškinantį protono pernašą remiantis eksperimentiniais rezultatais. Temperatūrinė PERS kinetikos priklausomybė leidžia įžvelgti aktyvacinį pirmojo protono pernešimo akto pobūdį. Teigiamosios PERS dalies laiko pastovioji gali būti priskirta L tarpinės būsenos gyvavimo trukmei. Esant mažai pH vertei, sužadinus šviesa, antroji PERS fazė neatsiranda, o tai rodo, jog rūgščioje aplinkoje protoniniai kanalai yra tiesiog „užkemšami“. Fotoelektrinis atsakas susideda iš dviejų komponenčių, kurių pirmoji yra sietina su protono pernešimu, o antroji yra poliarizacijos, susijusios su aktyviuoju transportu, pasekmė. Pastaroji komponentė nepriklauso nuo išorinio elektrinio lauko. Pateikiamas fizikinis modelis rodo, kad poliarizacinis laukas yra aktyvų protono pernešimą salygojantis veiksnys (o ne šalutinis efektas). Pradinėje stadijoje Šifo bazė ir Asp85 yra zviterjoninėje būsenoje. Šios būsenos energetinė evoliucija nagrinėjama aptariant dipolinių medžiagų mechanines–elektrines savybes ir vandenilinių jungčių pjezoelektrinį efektą. Remiantis pastarųjų metų kristalografinės struktūrinės analizės ir molekulinės dinamikos rezultatais, galima teigti, kad aktyviojo centro poliarizacija yra retinalio izomerizacijos metu atsiradusių mechaninių įtempimų išdava. Pirmojo protono pernešimo žingsnio pabaigoje visa energija yra sukaupiama energizuotame protone, o poliarizacinis laukas išnyksta. Persiorganizavęs vandenilinių ryšių tinklas užkerta kelią protono grįžimui atgal ir protonas, toliau judėdamas per membraną, sukuria transmembraninį potencialą.


References / Nuorodos


[1] D. Oesterhelt and W. Stoeckenius, Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973),
http://dx.doi.org/10.1073/pnas.70.10.2853
[2] D. Oesterhelt, Bacteriorhodopsin as an example of a light-driven proton pump, Angew. Chem. Int. Ed. Engl. 15, 17–24 (1976),
http://dx.doi.org/10.1002/anie.197600171
[3] R.A. Mathies, S.W. Lin, J.B. Ames, and W.T. Pollard, From femtoseconds to biology: Mechanism of bacteriorhodopsin's light-driven proton pump, Annu. Rev. Biophys. Biophys. Chem. 20, 491–518 (1991),
http://dx.doi.org/10.1146/annurev.bb.20.060191.002423
[4] D. Oesterhelt, J. Tittor, and E. Bamberg, A unifying concept for ion translocation in retinal proteins, J. Bioenerg. Biomembr. 24, 181–191 (1992),
http://dx.doi.org/10.1007/BF00762676
[5] K.J. Rotschild, FTIR difference spectroscopy of bacteriorhodopsin: Toward a molecular model, J. Bioenerg. Biomembr. 24, 147–167 (1992),
http://dx.doi.org/10.1007/BF00762674
[6] J.K. Lanyi, Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin, Biochim. Biophys. Acta Bioenerg. 1183, 241–261 (1993),
http://dx.doi.org/10.1016/0005-2728(93)90226-6
[7] M.P. Krebs and H.J. Khorana, Mechanism of light-dependent proton translocation by bacteriorhodopsin, J. Bacteriol. 175, 1555–1560 (1993),
http://dx.doi.org/10.1128/jb.175.6.1555-1560.1993
[8] K. Schulten, W. Humphrey, I. Logunov, M. Sheves, and D. Xu, Molecular dynamics studies of bacteriorhodopsin's photocycles, Isr. J. Chem. 35, 447–464 (1995),
http://dx.doi.org/10.1002/ijch.199500042
[9] Y. Kimura, D.G. Vassylyev, A. Miyazawa, A. Kidera, M. Matsushima, K. Mitsuika, K. Murata, T. Hirai, and Y. Fujiyoshi, Surface of bacteriorhodopsin revealed by high-resolution electron crystallography, Nature 389, 206–211 (1997),
http://dx.doi.org/10.1038/38323
[10] L.O. Essen, R. Siegert, W.D. Lehmann, and D. Oesterhelt, Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex, Proc. Natl. Acad. Sci. USA 95, 11673–11678 (1998),
http://dx.doi.org/10.1073/pnas.95.20.11673
[11] H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, and J.K. Lanyi, Structure of bacteriorhodopsin at 1.55 Å resolution, J. Mol. Biol. 291, 899–911 (1999),
http://dx.doi.org/10.1006/jmbi.1999.3027
[12] E. Belrhali, P. Nollert, D. Royant, C. Menzel, J.R. Rozenbusch, E.M. Landau, and E. Pebay-Peyroula, Protein, lipid and water organization in bacteriorhodopsin: A molecular view of the purple membrane at 1.9 angstroms resolution, Structure 7, 909–917 (1999),
http://dx.doi.org/10.1016/S0969-2126(99)80118-X
[13] B. Schobert, J. Cupp-Vickery, V. Hornak, S.O. Smith, and J.K. Lanyi, Crystallographic structure of the K intermediate of bacteriorhodopsin: Conservation of free energy after photoisomerization of the retinal, J. Mol. Biol. 321, 715–726 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)00681-2
[14] J.K. Lanyi and B. Schobert, Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle, J. Mol. Biol. 328, 439–450 (2003),
http://dx.doi.org/10.1016/S0022-2836(03)00263-8
[15] J.K. Lanyi, What is real crystallographic structure of the L photointermediate of bacteriorhodopsin?, Biochim. Biophys. Acta 1685, 14–22 (2004),
http://dx.doi.org/10.1016/j.bbabio.2004.03.018
[16] K. Edman, A. Royant, G. Larsson, F. Jacobson, T. Taylor, D. van der Spoel, E.M. Landau, E. Pebay-Peyroula, and R. Neutze, Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin, J. Biol. Chem. 279, 2147–2158 (2004),
http://dx.doi.org/10.1074/jbc.M300709200
[17] J.K. Lanyi and B. Schobert, Crystallographic structure of the retinal and the protein after deprotonation of the schiff base: The switch in the bacteriorhodopsin photocycle, J. Mol. Biol. 321, 727–737 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)00682-4
[18] L.S. Brown, R. Needleman, and J.K. Lanyi, Conformational change of the E-F interhelical loop in the M photointermediate of bacteriorhodopsin, J. Mol. Biol. 317, 471–478 (2002),
http://dx.doi.org/10.1006/jmbi.2002.5428
[19] J.K. Lanyi, X-ray diffraction of bacteriorhodopsin photocycle intermediates (Review), Mol. Membr. Biol. 21, 143–150 (2004),
http://dx.doi.org/10.1080/09687680410001666345
[20] R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro, and E.M. Landau, Bacteriorhodopsin: A high-resolution structural view of vectorial proton transport, Biochim. Biophys. Acta 1565, 144–167 (2002),
http://dx.doi.org/10.1016/S0005-2736(02)00566-7
[21] H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, and J.K. Lanyi, Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution, Science 286, 255–260 (1999),
http://dx.doi.org/10.1126/science.286.5438.255
[22] J.K. Lanyi, Molecular mechanism of ion transport in bacteriorhodopsin: Insights from crystallographic, spectroscopic and mutational studies, J. Phys. Chem. B 104, 11441–11448 (2000),
http://dx.doi.org/10.1021/jp0023718
[23] Bacteriorhodopsin, ed. J.K. Lanyi, Biochim. Biophys. Acta – Bioenergetics 1460, pp. 1–239 (2000),
http://dx.doi.org/10.1016/S0005-2728(00)00124-9
[24] J.K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol. 66, 665–688 (2004),
http://dx.doi.org/10.1146/annurev.physiol.66.032102.150049
[25] I. Rousso, E. Khatchatryan, I. Brodsky, R. Nachustai, M. Ottolenghi, M. Sheves, and A. Lewis, Atomic force sensing of light-induced protein dynamics with microsecond time resolution in bacteriorhodopsin and photosynthetic reaction centres, J. Struct. Biol. 119, 158–164 (1997),
http://dx.doi.org/10.1006/jsbi.1997.3879
[26] G. Varo and J.K. Lanyi, Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle, Biochemistry 30, 5008–5015 (1991),
http://dx.doi.org/10.1021/bi00234a024
[27] S. Hayashi and I. Ohmine, Proton transfer in bacteriorhodopsin: Structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method, J. Phys. Chem. B 104, 10678–10691 (2000),
http://dx.doi.org/10.1021/jp001508r
[28] S. Hayashi, E. Tajkhorshid, and K. Schulten, Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle, Biophys. J. 83, 1281–1297 (2002),
http://dx.doi.org/10.1016/S0006-3495(02)73900-3
[29] S. Hayashi, E. Tajkhorshid, and K. Schulten, Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore, Biophys. J. 85, 1440–1449 (2003),
http://dx.doi.org/10.1016/S0006-3495(03)74576-7
[30] S. Nakajima, K. Ohno, Y. Inoue, and M. Sakurai, Quantum chemical study of the pKa control mechanism for the active center in bacteriorhodopsin and its M intermediate, J. Phys. Chem. B 107, 2867–2874 (2003),
http://dx.doi.org/10.1021/jp027688h
[31] Y.-S. Lee, Dynamics of proton transfer in bacteriorhodopsin, J. Am. Chem. Soc. 126, 2225–2230 (2004),
http://dx.doi.org/10.1021/ja036115v
[32] L.S. Brown, A.K. Dioumaev, R. Needleman, and J.K. Lanyi, Connectivity of the retinal Schiff base to Asp85 and Asp96 during the basteriorhodopsin photocycle: The local-access model, Biophys. J. 75, 1455–1465 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)74064-0
[33] H. Kandori, Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin, Biochim. Biophys. Acta 1658, 72–79 (2004),
http://dx.doi.org/10.1016/j.bbabio.2004.03.015
[34] P. Kietis, M. Vengris, and L. Valkunas, Electrical-to-mechanical coupling in purple membranes: Membrane as electrostrictive medium, Biophys. J. 80, 1631–1640 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)76135-8
[35] H.-W. Trissl and M. Montal, Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin, Nature 266, 655–657 (1977),
http://dx.doi.org/10.1038/266655a0
[36] L.A. Drachev, A.D. Kaulen, and V.P. Skulachev, Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis, FEBS Lett. 87, 161–167 (1978),
http://dx.doi.org/10.1016/0014-5793(78)80157-4
[37] F.T. Hong and M. Montal, Bacteriorhodopsin in model membranes, a component of the displacement photocurrent in the microsecond time scale, Biophys. J. 25, 465–472 (1979),
http://dx.doi.org/10.1016/S0006-3495(79)85316-3
[38] E.P. Lukashev, E. Vozary, A.A. Kononenko, and A.B. Rubin, Electric field promotion of the bacteriorhodopsin BR570 to BR412 photoconversion in films of Halobacterium halobium purple membranes, Biochim. Biophys. Acta 592, 258–266 (1980),
http://dx.doi.org/10.1016/0005-2728(80)90186-3
[39] G. Varo and L. Keszthelyi, Photoelectric signals from dried oriented purple membranes of Halobacterium halobium, Biophys. J. 43, 47–51 (1983),
http://dx.doi.org/10.1016/S0006-3495(83)84322-7
[40] R. Simmeth and G.W. Rayfield, Evidence that the photoelectric response of bacteriorhodopsin occurs in less than 5 picoseconds, Biophys. J. 57, 1099–1101 (1990),
http://dx.doi.org/10.1016/S0006-3495(90)82629-1
[41] K.J. Hellingwerf, J.J. Schuurmans, and H.V. Westerhoff, Demonstration of coupling between the protonmotive force across bacteriorhodopsin and the flow through its photochemical cycle, FEBS Lett. 92, 181–186 (1978),
http://dx.doi.org/10.1016/0014-5793(78)80749-2
[42] E. Bamberg, N.A. Dencher, A. Fahr, and M.P. Heyn, Transmembraneous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers, Proc. Natl. Acad. Sci. USA 78, 7502–7506 (1980),
http://dx.doi.org/10.1073/pnas.78.12.7502
[43] D. Braun, N.A. Dencher, A. Fahr, M. Lindau, and M.P. Heyn, Nonlinear voltage dependence of the light-driven proton pump current of bacteriorhodopsin, Biophys. J. 53, 617–621 (1988),
http://dx.doi.org/10.1016/S0006-3495(88)83140-0
[44] R.T. Boconadi, S.G. Taneva, and L. Keszthelyi, Non-proton ion release in purple membrane, Biophys. J. 67, 2490–2492 (1994),
http://dx.doi.org/10.1016/S0006-3495(94)80737-4
[45] R.T. Boconadi, S.G. Taneva, and L. Keszthelyi, Photoexcitation of the O intermediate of bacteriorhodopsin and its mutant E204Q, J. Biol. Phys. Chem. 1, 58–63 (2001),
http://dx.doi.org/10.4024/11TO01A.01.02
[46] P.B. Kietis, P. Saudargas, and L. Valkunas, Electrostriction of purple membranes and the model of active proton transfer in bacteriorhodopsin, Proc. SPIE 5122, 122–131 (2003),
http://dx.doi.org/10.1117/12.515645
[47] G. Varo, Dried oriented purple membrane samples, Acta Biol. Acad. Sci. Hung. 32, 301–310 (1981)
[48] G. Varo and L. Keszthelyi, Arrhenius parameters of the bacteriorhodopsin photocycle in dried oriented samples, Biophys. J. 47, 243–246 (1985),
http://dx.doi.org/10.1016/S0006-3495(85)83897-2
[49] H.W. Trissl, Photoelectric measurements of purple membranes, Photochem. Photobiol. 51, 793–818 (1990),
http://dx.doi.org/10.1111/php.1990.51.6.793
[50] J.P. Wang, S.K. Yoo, L. Song, and M.A. El-Sayed, Molecular mechanizm of differential photoelectric response of bacteriorhodopsin, J. Phys. Chem. B 101, 3420–3423 (1997),
http://dx.doi.org/10.1021/jp962111j
[51] P. Kietis, D. Linge, P. Saudargas, and L. Valkūnas, Photoelectric response and electrostrictive properties of dried purple membrane films: The comparative study, Lithuanian J. Phys. 41, 477–483 (2001)
[52] R. Jonas, Y. Kontalos, and T.G. Ebrey, Purple membrane: Surface chare density and the multiple effect of pH cations, Photochem. Photobiol. 52, 1163–1177 (1990),
http://dx.doi.org/10.1111/j.1751-1097.1990.tb08455.x
[53] H.I.A. Mostafa, G. Varo, R. Toth-Boconadi, A. Der, and L. Keszthelyi, Electrooptical measurements on purple membranes containing bacteriorhodopsin mutants, Biophys. J. 70, 468–472 (1996),
http://dx.doi.org/10.1016/S0006-3495(96)79590-5
[54] S.G. Taneva and I.B. Petkanchin, Surface electric properties of biological systems, Trends in Photochem. Photobiol. 6, 113–139 (1999)
[55] M. Eisenbach and S.R. Caplan, Interaction of purple membrane with solvents II. Mode of interaction, Biochem. Biophys. Acta 554, 281–292 (1979),
http://dx.doi.org/10.1016/0005-2736(79)90370-5
[56] G.I. Groma, L. Kelemen, A. Kulcsar, M. Lakatos, and G. Varo, Photocycle of dried acid form of bacteriorhodopsin, Biophys. J. 81, 3432–3441 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)75975-9
[57] I. Rousso, E. Khatchatryan, Y. Gat, I. Brodsky, M. Ottolenghi, M. Sheves, and A. Lewis, Microsecond atomic force sensing of protein conformational dynamics: implication for the primary light-induced events in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 94, 7937–7941 (1997),
http://dx.doi.org/10.1073/pnas.94.15.7937
[58] A. Royant, K. Edman, T. Ursby, E.P. Peyroula, E.M. Landauk, and R. Neutze, Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin, Nature 406, 645–648 (2000),
http://dx.doi.org/10.1038/35020599
[59] P. Kietis, M. Vengris, and L. Valkunas, in: Bioelectronic Applications of Photochromic Pigments. NATO Science Series, eds. A. Der and L. Keszthelyi (IOS Press, Amsterdam, 2001) pp. 185–197
[60] V.I. Pasechnik, Electrostrictive measurements of viscous-elastic properties of lipid bilayer membranes, in: Itogi Nauki i Tekhniki 2, ed. P.G. Kostyuk (VINITI, Moscow, 1982) pp. 267–307 [in Russian]
[61] P.W. Atkins, Physical Chemistry, 6th ed. (Oxford University Press, Oxford, 1998)
[62] P.B. Kietis, Piezoelectric mechanism for the active transport of change in the purple membrane of Halobacterium halobium, Biol. Membranes 1, 1307–1315 (1984) [in Russian]
[63] P.B. Kietis and R. Rozga, Strained conformation and active transport of ions in bacteriorhodopsin, Biol. Membranes 4, 613–623 (1987) [in Russian]
[64] P.B. Kietis, P. Saudargas, and L. Valkūnas, Time-dependent photoconductivity of bacteriorhodopsin, Environmental Chem. Phys. 26, 68–76 (2004)
[65] F. Zhu and K. Schulten, Water and proton conduction through carbon nanotubes as models for biological channels, Biophys. J. 85, 236–244 (2003),
http://dx.doi.org/10.1016/S0006-3495(03)74469-5
[66] T. Kobayashi, H. Ohtani, J.-I. Iwai, A. Ikegami, and H. Uchiki, Effect of pH on the photoreaction cycles of bacteriorhodopsin, FEBS Lett. 162, 197–200 (1983), .
http://dx.doi.org/10.1016/0014-5793(83)81078-3
[67] K. Ludmann, C. Gergely, A. Der, and G. Váró, Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range, Biophys. J. 75, 3120–3126 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)77753-7
[68] T. Kouyama, T. Nishikawa, T. Tokuhisa, and H. Okumura, Crystal structure of the L intermediate of bacteriorhodopsin: Evidence for vertical translocation of a water molecule during the proton pumping cycle, J. Mol. Biol. 335, 531–546 (2004),
http://dx.doi.org/10.1016/j.jmb.2003.10.068
[69] L.A. Drachev, A.D. Kaulen, L.V. Khitrina, and V.P. Skulachev, Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin, Eur. J. Biochem. 117, 461–470 (1981),
http://dx.doi.org/10.1111/j.1432-1033.1981.tb06361.x
[70] R. Korenstein and B. Hess, Hydration effects on cis-trans isomerization of bacteriorhodopsin, Eur. J. Biochem. 82, 7–11 (1977),
http://dx.doi.org/10.1016/0014-5793(77)80874-0
[71] I.K. Starzomska, A. Filarowski, M. Rospenk, A. Koll, and S. Melikova, Proton transfer equilibria in Schiff bases with steric repulsion, J. Phys. Chem. A 108, 2131–2138 (2004),
http://dx.doi.org/10.1021/jp035009c
[72] A. Filarowski, A. Koll, A. Karpfen, and P. Wolschann, Intramolecular hydrogen bond in molecular and proton-transfer forms of Schiff bases, Chem. Phys. 297, 323–332 (2004),
http://dx.doi.org/10.1016/j.chemphys.2003.10.035