[PDF]
http://dx.doi.org/10.3952/lithjphys.45509
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 397–409 (2005)
PIEZOELECTRIC MODEL FOR ACTIVE
PROTON TRANSPORT IN BACTERIORHODOPSIN ∗
P.B. Kietisa,b, P. Saudargasa, and L.
Valkūnasa,c
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: saudargas@ar.fi.lt
bDepartment of Radiophysics of Faculty of
Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius,
Lithuania
cDepartment of Theoretical Physics of Faculty of
Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius,
Lithuania
Received 9 June 2005
Bacteriorhodopsin is a photoactive protein
performing the transmembrane proton pumping through the purple
membrane of Halobacterium salinarum. Experimental results
of the electrical studies of the dried purple membrane films
excited by short light pulses are presented. The time constant of
the photoelectric response of the purple membrane film corresponds
to the optically detectable L intermediate lifetime that is tens
of micro seconds. Absence of the positive part of the
photoelectric response signal in the time range of tens of
microseconds under acidic conditions supports the assumption about
the possibility of blockage of the proton transfer. The
polarization field is a stimulating factor of the active proton
transfer according to the assumption of the suggested two-state
model. The mechanical–electrical properties of the dipole
materials and the piezoelectric effect of the hydrogen bonds are
discussed in the context of the zwitterionic state of the Schiff
base and its counter ion Asp85. On the basis of the recent
crystallographic data and molecular dynamics simulations it is
concluded that the polarization of the Schiff base is a
consequence of the mechanically strained hydrogen bonds caused by
the retinal photoisomerization. The reorganized H-bond network
impedes the proton way back, and the proton accomplishes work
while moving in the external circuit.
Keywords: bacteriorhodopsin, photoresponse, piezoelectric
effect
PACS: 80, 87.14, 87.15.-v, 87.80
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
AKTYVIOJO PROTONŲ TRANSPORTO
BAKTERIORODOPSINE PJEZOELEKTRINIS MODELIS
P.B. Kietisa,b, P. Saudargasa, L.
Valkūnasa,b
aFizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
Transmembraninis baltymas bakteriorodopsinas
(BR), konvertuodamas šviesos energiją į kitas energijos formas,
vykdo aktyvų protonų transportą per purpurinę membraną (PM) Halobacterium
salinarum bakterijose. Čia pristatomi fotoelektriniai sausų
PM plėvelių tyrimai. Nanosekundiniu lazerio impulsu sužadintas
fotoelektrinis atsakas (PERS) yra priskiriamas protono pernašai BR
aktyviajame centre. Pateikiame dviejų potencialinių duobių modelį,
aiškinantį protono pernašą remiantis eksperimentiniais
rezultatais. Temperatūrinė PERS kinetikos priklausomybė leidžia
įžvelgti aktyvacinį pirmojo protono pernešimo akto pobūdį.
Teigiamosios PERS dalies laiko pastovioji gali būti priskirta L
tarpinės būsenos gyvavimo trukmei. Esant mažai pH vertei,
sužadinus šviesa, antroji PERS fazė neatsiranda, o tai rodo, jog
rūgščioje aplinkoje protoniniai kanalai yra tiesiog „užkemšami“.
Fotoelektrinis atsakas susideda iš dviejų komponenčių, kurių
pirmoji yra sietina su protono pernešimu, o antroji yra
poliarizacijos, susijusios su aktyviuoju transportu, pasekmė.
Pastaroji komponentė nepriklauso nuo išorinio elektrinio lauko.
Pateikiamas fizikinis modelis rodo, kad poliarizacinis laukas yra
aktyvų protono pernešimą salygojantis veiksnys (o ne šalutinis
efektas). Pradinėje stadijoje Šifo bazė ir Asp85 yra
zviterjoninėje būsenoje. Šios būsenos energetinė evoliucija
nagrinėjama aptariant dipolinių medžiagų mechanines–elektrines
savybes ir vandenilinių jungčių pjezoelektrinį efektą. Remiantis
pastarųjų metų kristalografinės struktūrinės analizės ir
molekulinės dinamikos rezultatais, galima teigti, kad aktyviojo
centro poliarizacija yra retinalio izomerizacijos metu atsiradusių
mechaninių įtempimų išdava. Pirmojo protono pernešimo žingsnio
pabaigoje visa energija yra sukaupiama energizuotame protone, o
poliarizacinis laukas išnyksta. Persiorganizavęs vandenilinių
ryšių tinklas užkerta kelią protono grįžimui atgal ir protonas,
toliau judėdamas per membraną, sukuria transmembraninį potencialą.
References / Nuorodos
[1] D. Oesterhelt and W. Stoeckenius, Functions of a new
photoreceptor membrane, Proc. Natl. Acad. Sci. USA 70,
2853–2857 (1973),
http://dx.doi.org/10.1073/pnas.70.10.2853
[2] D. Oesterhelt, Bacteriorhodopsin as an example of a light-driven
proton pump, Angew. Chem. Int. Ed. Engl. 15, 17–24 (1976),
http://dx.doi.org/10.1002/anie.197600171
[3] R.A. Mathies, S.W. Lin, J.B. Ames, and W.T. Pollard, From
femtoseconds to biology: Mechanism of bacteriorhodopsin's
light-driven proton pump, Annu. Rev. Biophys. Biophys. Chem. 20,
491–518 (1991),
http://dx.doi.org/10.1146/annurev.bb.20.060191.002423
[4] D. Oesterhelt, J. Tittor, and E. Bamberg, A unifying concept for
ion translocation in retinal proteins, J. Bioenerg. Biomembr. 24,
181–191 (1992),
http://dx.doi.org/10.1007/BF00762676
[5] K.J. Rotschild, FTIR difference spectroscopy of
bacteriorhodopsin: Toward a molecular model, J. Bioenerg. Biomembr.
24, 147–167 (1992),
http://dx.doi.org/10.1007/BF00762674
[6] J.K. Lanyi, Proton translocation mechanism and energetics in the
light-driven pump bacteriorhodopsin, Biochim. Biophys. Acta
Bioenerg. 1183, 241–261 (1993),
http://dx.doi.org/10.1016/0005-2728(93)90226-6
[7] M.P. Krebs and H.J. Khorana, Mechanism of light-dependent proton
translocation by bacteriorhodopsin, J. Bacteriol. 175,
1555–1560 (1993),
http://dx.doi.org/10.1128/jb.175.6.1555-1560.1993
[8] K. Schulten, W. Humphrey, I. Logunov, M. Sheves, and D. Xu,
Molecular dynamics studies of bacteriorhodopsin's photocycles, Isr.
J. Chem. 35, 447–464 (1995),
http://dx.doi.org/10.1002/ijch.199500042
[9] Y. Kimura, D.G. Vassylyev, A. Miyazawa, A. Kidera, M.
Matsushima, K. Mitsuika, K. Murata, T. Hirai, and Y. Fujiyoshi,
Surface of bacteriorhodopsin revealed by high-resolution electron
crystallography, Nature 389, 206–211 (1997),
http://dx.doi.org/10.1038/38323
[10] L.O. Essen, R. Siegert, W.D. Lehmann, and D. Oesterhelt, Lipid
patches in membrane protein oligomers: Crystal structure of the
bacteriorhodopsin-lipid complex, Proc. Natl. Acad. Sci. USA 95,
11673–11678 (1998),
http://dx.doi.org/10.1073/pnas.95.20.11673
[11] H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, and
J.K. Lanyi, Structure of bacteriorhodopsin at 1.55 Å resolution, J.
Mol. Biol. 291, 899–911 (1999),
http://dx.doi.org/10.1006/jmbi.1999.3027
[12] E. Belrhali, P. Nollert, D. Royant, C. Menzel, J.R. Rozenbusch,
E.M. Landau, and E. Pebay-Peyroula, Protein, lipid and water
organization in bacteriorhodopsin: A molecular view of the purple
membrane at 1.9 angstroms resolution, Structure 7, 909–917
(1999),
http://dx.doi.org/10.1016/S0969-2126(99)80118-X
[13] B. Schobert, J. Cupp-Vickery, V. Hornak, S.O. Smith, and J.K.
Lanyi, Crystallographic structure of the K intermediate of
bacteriorhodopsin: Conservation of free energy after
photoisomerization of the retinal, J. Mol. Biol. 321,
715–726 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)00681-2
[14] J.K. Lanyi and B. Schobert, Mechanism of proton transport in
bacteriorhodopsin from crystallographic structures of the K, L, M1,
M2, and M2' intermediates of the
photocycle, J. Mol. Biol. 328, 439–450 (2003),
http://dx.doi.org/10.1016/S0022-2836(03)00263-8
[15] J.K. Lanyi, What is real crystallographic structure of the L
photointermediate of bacteriorhodopsin?, Biochim. Biophys. Acta 1685,
14–22 (2004),
http://dx.doi.org/10.1016/j.bbabio.2004.03.018
[16] K. Edman, A. Royant, G. Larsson, F. Jacobson, T. Taylor, D. van
der Spoel, E.M. Landau, E. Pebay-Peyroula, and R. Neutze,
Deformation of helix C in the low temperature L-intermediate of
bacteriorhodopsin, J. Biol. Chem. 279, 2147–2158 (2004),
http://dx.doi.org/10.1074/jbc.M300709200
[17] J.K. Lanyi and B. Schobert, Crystallographic structure of the
retinal and the protein after deprotonation of the schiff base: The
switch in the bacteriorhodopsin photocycle, J. Mol. Biol. 321,
727–737 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)00682-4
[18] L.S. Brown, R. Needleman, and J.K. Lanyi, Conformational change
of the E-F interhelical loop in the M photointermediate of
bacteriorhodopsin, J. Mol. Biol. 317, 471–478 (2002),
http://dx.doi.org/10.1006/jmbi.2002.5428
[19] J.K. Lanyi, X-ray diffraction of bacteriorhodopsin photocycle
intermediates (Review), Mol. Membr. Biol. 21, 143–150
(2004),
http://dx.doi.org/10.1080/09687680410001666345
[20] R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro,
and E.M. Landau, Bacteriorhodopsin: A high-resolution structural
view of vectorial proton transport, Biochim. Biophys. Acta 1565,
144–167 (2002),
http://dx.doi.org/10.1016/S0005-2736(02)00566-7
[21] H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, and
J.K. Lanyi, Structural changes in bacteriorhodopsin during ion
transport at 2 angstrom resolution, Science 286, 255–260
(1999),
http://dx.doi.org/10.1126/science.286.5438.255
[22] J.K. Lanyi, Molecular mechanism of ion transport in
bacteriorhodopsin: Insights from crystallographic, spectroscopic and
mutational studies, J. Phys. Chem. B 104, 11441–11448
(2000),
http://dx.doi.org/10.1021/jp0023718
[23] Bacteriorhodopsin, ed. J.K. Lanyi, Biochim. Biophys. Acta –
Bioenergetics 1460, pp. 1–239 (2000),
http://dx.doi.org/10.1016/S0005-2728(00)00124-9
[24] J.K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol. 66,
665–688 (2004),
http://dx.doi.org/10.1146/annurev.physiol.66.032102.150049
[25] I. Rousso, E. Khatchatryan, I. Brodsky, R. Nachustai, M.
Ottolenghi, M. Sheves, and A. Lewis, Atomic force sensing of
light-induced protein dynamics with microsecond time resolution in
bacteriorhodopsin and photosynthetic reaction centres, J. Struct.
Biol. 119, 158–164 (1997),
http://dx.doi.org/10.1006/jsbi.1997.3879
[26] G. Varo and J.K. Lanyi, Kinetic and spectroscopic evidence for
an irreversible step between deprotonation and reprotonation of the
Schiff base in the bacteriorhodopsin photocycle, Biochemistry 30,
5008–5015 (1991),
http://dx.doi.org/10.1021/bi00234a024
[27] S. Hayashi and I. Ohmine, Proton transfer in bacteriorhodopsin:
Structure, excitation, IR spectra, and potential energy surface
analyses by an ab initio QM/MM method, J. Phys. Chem. B 104,
10678–10691 (2000),
http://dx.doi.org/10.1021/jp001508r
[28] S. Hayashi, E. Tajkhorshid, and K. Schulten, Structural changes
during the formation of early intermediates in the bacteriorhodopsin
photocycle, Biophys. J. 83, 1281–1297 (2002),
http://dx.doi.org/10.1016/S0006-3495(02)73900-3
[29] S. Hayashi, E. Tajkhorshid, and K. Schulten, Molecular dynamics
simulation of bacteriorhodopsin's photoisomerization using ab initio
forces for the excited chromophore, Biophys. J. 85,
1440–1449 (2003),
http://dx.doi.org/10.1016/S0006-3495(03)74576-7
[30] S. Nakajima, K. Ohno, Y. Inoue, and M. Sakurai, Quantum
chemical study of the pKa control mechanism for the active center in
bacteriorhodopsin and its M intermediate, J. Phys. Chem. B 107,
2867–2874 (2003),
http://dx.doi.org/10.1021/jp027688h
[31] Y.-S. Lee, Dynamics of proton transfer in bacteriorhodopsin, J.
Am. Chem. Soc. 126, 2225–2230 (2004),
http://dx.doi.org/10.1021/ja036115v
[32] L.S. Brown, A.K. Dioumaev, R. Needleman, and J.K. Lanyi,
Connectivity of the retinal Schiff base to Asp85 and Asp96 during
the basteriorhodopsin photocycle: The local-access model, Biophys.
J. 75, 1455–1465 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)74064-0
[33] H. Kandori, Hydration switch model for the proton transfer in
the Schiff base region of bacteriorhodopsin, Biochim. Biophys. Acta
1658, 72–79 (2004),
http://dx.doi.org/10.1016/j.bbabio.2004.03.015
[34] P. Kietis, M. Vengris, and L. Valkunas,
Electrical-to-mechanical coupling in purple membranes: Membrane as
electrostrictive medium, Biophys. J. 80, 1631–1640 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)76135-8
[35] H.-W. Trissl and M. Montal, Electrical demonstration of rapid
light-induced conformational changes in bacteriorhodopsin, Nature 266,
655–657 (1977),
http://dx.doi.org/10.1038/266655a0
[36] L.A. Drachev, A.D. Kaulen, and V.P. Skulachev, Time resolution
of the intermediate steps in the bacteriorhodopsin-linked
electrogenesis, FEBS Lett. 87, 161–167 (1978),
http://dx.doi.org/10.1016/0014-5793(78)80157-4
[37] F.T. Hong and M. Montal, Bacteriorhodopsin in model membranes,
a component of the displacement photocurrent in the microsecond time
scale, Biophys. J. 25, 465–472 (1979),
http://dx.doi.org/10.1016/S0006-3495(79)85316-3
[38] E.P. Lukashev, E. Vozary, A.A. Kononenko, and A.B. Rubin,
Electric field promotion of the bacteriorhodopsin BR570
to BR412 photoconversion in films of Halobacterium
halobium purple membranes, Biochim. Biophys. Acta 592,
258–266 (1980),
http://dx.doi.org/10.1016/0005-2728(80)90186-3
[39] G. Varo and L. Keszthelyi, Photoelectric signals from dried
oriented purple membranes of Halobacterium halobium, Biophys. J. 43,
47–51 (1983),
http://dx.doi.org/10.1016/S0006-3495(83)84322-7
[40] R. Simmeth and G.W. Rayfield, Evidence that the photoelectric
response of bacteriorhodopsin occurs in less than 5 picoseconds,
Biophys. J. 57, 1099–1101 (1990),
http://dx.doi.org/10.1016/S0006-3495(90)82629-1
[41] K.J. Hellingwerf, J.J. Schuurmans, and H.V. Westerhoff,
Demonstration of coupling between the protonmotive force across
bacteriorhodopsin and the flow through its photochemical cycle, FEBS
Lett. 92, 181–186 (1978),
http://dx.doi.org/10.1016/0014-5793(78)80749-2
[42] E. Bamberg, N.A. Dencher, A. Fahr, and M.P. Heyn,
Transmembraneous incorporation of photoelectrically active
bacteriorhodopsin in planar lipid bilayers, Proc. Natl. Acad. Sci.
USA 78, 7502–7506 (1980),
http://dx.doi.org/10.1073/pnas.78.12.7502
[43] D. Braun, N.A. Dencher, A. Fahr, M. Lindau, and M.P. Heyn,
Nonlinear voltage dependence of the light-driven proton pump current
of bacteriorhodopsin, Biophys. J. 53, 617–621 (1988),
http://dx.doi.org/10.1016/S0006-3495(88)83140-0
[44] R.T. Boconadi, S.G. Taneva, and L. Keszthelyi, Non-proton ion
release in purple membrane, Biophys. J. 67, 2490–2492
(1994),
http://dx.doi.org/10.1016/S0006-3495(94)80737-4
[45] R.T. Boconadi, S.G. Taneva, and L. Keszthelyi, Photoexcitation
of the O intermediate of bacteriorhodopsin and its mutant E204Q, J.
Biol. Phys. Chem. 1, 58–63 (2001),
http://dx.doi.org/10.4024/11TO01A.01.02
[46] P.B. Kietis, P. Saudargas, and L. Valkunas, Electrostriction of
purple membranes and the model of active proton transfer in
bacteriorhodopsin, Proc. SPIE 5122, 122–131 (2003),
http://dx.doi.org/10.1117/12.515645
[47] G. Varo, Dried oriented purple membrane samples, Acta Biol.
Acad. Sci. Hung. 32, 301–310 (1981)
[48] G. Varo and L. Keszthelyi, Arrhenius parameters of the
bacteriorhodopsin photocycle in dried oriented samples, Biophys. J.
47, 243–246 (1985),
http://dx.doi.org/10.1016/S0006-3495(85)83897-2
[49] H.W. Trissl, Photoelectric measurements of purple membranes,
Photochem. Photobiol. 51, 793–818 (1990),
http://dx.doi.org/10.1111/php.1990.51.6.793
[50] J.P. Wang, S.K. Yoo, L. Song, and M.A. El-Sayed, Molecular
mechanizm of differential photoelectric response of
bacteriorhodopsin, J. Phys. Chem. B 101, 3420–3423 (1997),
http://dx.doi.org/10.1021/jp962111j
[51] P. Kietis, D. Linge, P. Saudargas, and L. Valkūnas,
Photoelectric response and electrostrictive properties of dried
purple membrane films: The comparative study, Lithuanian J. Phys. 41,
477–483 (2001)
[52] R. Jonas, Y. Kontalos, and T.G. Ebrey, Purple membrane: Surface
chare density and the multiple effect of pH cations, Photochem.
Photobiol. 52, 1163–1177 (1990),
http://dx.doi.org/10.1111/j.1751-1097.1990.tb08455.x
[53] H.I.A. Mostafa, G. Varo, R. Toth-Boconadi, A. Der, and L.
Keszthelyi, Electrooptical measurements on purple membranes
containing bacteriorhodopsin mutants, Biophys. J. 70,
468–472 (1996),
http://dx.doi.org/10.1016/S0006-3495(96)79590-5
[54] S.G. Taneva and I.B. Petkanchin, Surface electric properties of
biological systems, Trends in Photochem. Photobiol. 6,
113–139 (1999)
[55] M. Eisenbach and S.R. Caplan, Interaction of purple membrane
with solvents II. Mode of interaction, Biochem. Biophys. Acta 554,
281–292 (1979),
http://dx.doi.org/10.1016/0005-2736(79)90370-5
[56] G.I. Groma, L. Kelemen, A. Kulcsar, M. Lakatos, and G. Varo,
Photocycle of dried acid form of bacteriorhodopsin, Biophys. J. 81,
3432–3441 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)75975-9
[57] I. Rousso, E. Khatchatryan, Y. Gat, I. Brodsky, M. Ottolenghi,
M. Sheves, and A. Lewis, Microsecond atomic force sensing of protein
conformational dynamics: implication for the primary light-induced
events in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 94,
7937–7941 (1997),
http://dx.doi.org/10.1073/pnas.94.15.7937
[58] A. Royant, K. Edman, T. Ursby, E.P. Peyroula, E.M. Landauk, and
R. Neutze, Helix deformation is coupled to vectorial proton
transport in the photocycle of bacteriorhodopsin, Nature 406,
645–648 (2000),
http://dx.doi.org/10.1038/35020599
[59] P. Kietis, M. Vengris, and L. Valkunas, in: Bioelectronic
Applications of Photochromic Pigments. NATO Science Series,
eds. A. Der and L. Keszthelyi (IOS Press, Amsterdam, 2001) pp.
185–197
[60] V.I. Pasechnik, Electrostrictive measurements of
viscous-elastic properties of lipid bilayer membranes, in: Itogi
Nauki i Tekhniki 2, ed. P.G. Kostyuk (VINITI, Moscow,
1982) pp. 267–307 [in Russian]
[61] P.W. Atkins, Physical Chemistry, 6th ed. (Oxford
University Press, Oxford, 1998)
[62] P.B. Kietis, Piezoelectric mechanism for the active transport
of change in the purple membrane of Halobacterium halobium, Biol.
Membranes 1, 1307–1315 (1984) [in Russian]
[63] P.B. Kietis and R. Rozga, Strained conformation and active
transport of ions in bacteriorhodopsin, Biol. Membranes 4,
613–623 (1987) [in Russian]
[64] P.B. Kietis, P. Saudargas, and L. Valkūnas, Time-dependent
photoconductivity of bacteriorhodopsin, Environmental Chem. Phys. 26,
68–76 (2004)
[65] F. Zhu and K. Schulten, Water and proton conduction through
carbon nanotubes as models for biological channels, Biophys. J. 85,
236–244 (2003),
http://dx.doi.org/10.1016/S0006-3495(03)74469-5
[66] T. Kobayashi, H. Ohtani, J.-I. Iwai, A. Ikegami, and H. Uchiki,
Effect of pH on the photoreaction cycles of bacteriorhodopsin, FEBS
Lett. 162, 197–200 (1983), .
http://dx.doi.org/10.1016/0014-5793(83)81078-3
[67] K. Ludmann, C. Gergely, A. Der, and G. Váró, Electric signals
during the bacteriorhodopsin photocycle, determined over a wide pH
range, Biophys. J. 75, 3120–3126 (1998),
http://dx.doi.org/10.1016/S0006-3495(98)77753-7
[68] T. Kouyama, T. Nishikawa, T. Tokuhisa, and H. Okumura, Crystal
structure of the L intermediate of bacteriorhodopsin: Evidence for
vertical translocation of a water molecule during the proton pumping
cycle, J. Mol. Biol. 335, 531–546 (2004),
http://dx.doi.org/10.1016/j.jmb.2003.10.068
[69] L.A. Drachev, A.D. Kaulen, L.V. Khitrina, and V.P. Skulachev,
Fast stages of photoelectric processes in biological membranes. I.
Bacteriorhodopsin, Eur. J. Biochem. 117, 461–470 (1981),
http://dx.doi.org/10.1111/j.1432-1033.1981.tb06361.x
[70] R. Korenstein and B. Hess, Hydration effects on cis-trans
isomerization of bacteriorhodopsin, Eur. J. Biochem. 82,
7–11 (1977),
http://dx.doi.org/10.1016/0014-5793(77)80874-0
[71] I.K. Starzomska, A. Filarowski, M. Rospenk, A. Koll, and S.
Melikova, Proton transfer equilibria in Schiff bases with steric
repulsion, J. Phys. Chem. A 108, 2131–2138 (2004),
http://dx.doi.org/10.1021/jp035009c
[72] A. Filarowski, A. Koll, A. Karpfen, and P. Wolschann,
Intramolecular hydrogen bond in molecular and proton-transfer forms
of Schiff bases, Chem. Phys. 297, 323–332 (2004),
http://dx.doi.org/10.1016/j.chemphys.2003.10.035