[PDF]
http://dx.doi.org/10.3952/lithjphys.45510
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 323–332 (2005)
Review
AEROSOLS, ORGANIC MATTER, AND
IMPACT ON CLIMATE
D. Čeburnisa,b, J. Ovadnevaitėa, K. Kvietkusa,
V. Remeikisa, and V. Ulevičiusa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: jurgita@ar.fi.lt
bDepartment of Experimental Physics, National
University of Ireland, Galway, University Road, Galway, Ireland
Received 29 August 2005
Anthropogenic aerosols are intricately linked
to the climate system and to the hydrologic cycle. The net effect
of aerosols is to cool the climate system by reflecting sunlight.
Light-absorbing aerosols can also cool the surface, but warm the
atmosphere. All these aerosol processes affect temperature profile
of the atmosphere and, along with the role of aerosols as cloud
condensation nuclei, affect the hydrologic cycle, through changes
in cloud properties and cover as well as precipitation. Aerosol
feedback processes have been proved to be difficult to model due
to the spatial, temporal, and morphological complexity of
aerosols. Continuous observations from satellites, international
field experiments, networks of ground-based measurements are
required to accurately study aerosol distribution, composition,
and transformation mechanisms. Industrialization and expanding
population significantly contribute to the organic nature of
aerosols. The warming climate has an impact on the Earth’s
biological activity, which in turn is significantly contributing
to the aerosol organic composition. The present paper reviews
existing knowledge of organic aerosol, its importance to global
climate modelling, and defines priority research areas.
Keywords: aerosols, organic matter, climate forcing, biogenic
emissions, primary and secondary sources
PACS: 91.40.Dr, 42.68.Jg, 92.60 Mt, 92.20 Bk
AEROZOLIS, ORGANINIAI JUNGINIAI
IR ĮTAKA KLIMATUI
D. Čeburnisa,b, J. Ovadnevaitėa, K.
Kvietkusa, V. Remeikisa, V. Ulevičiusa
aFizikos institutas, Vilnius, Lietuva
bAirijos nacionalinis universitetas, Galway,
Airija
Aerozolių ryšys su klimato kaita ir atmosferos
hidrologiniu ciklu yra pakankamai painus, nes atspindėdami saulės
šviesą jie sąlygoja klimato atšalimą, tačiau sugerdami energiją
šildo atmosferą ir keičia temperatūros profilį, o kartu, virsdami
debesų kondensacijos branduoliais, veikia hidrologinį atmosferos
ciklą, debesuotumą, debesų savybes ir kritulių susidarymą.
Aerozolio poveikis labai priklauso nuo jo tipo ir sudėties. Todėl
sunku minėtus mechanizmus ir grįžtamuosius ryšius modeliuoti. Be
to, aerozoliai yra įvairiausių tipų, pradedant nuo dykumų dulkių
ir vulkaninių pelenų ir baigiant miestų užterštumu. Aerozolių
koncentracijos smarkiai kinta laike ir erdvėje, todėl nuosekliems
aerozolių pasiskirstymo, sudėties ir transformacijos tyrimams
reikalingas stebėjimo stočių tinklas, Žemės palydovai ir
tiksliniai tiesioginiai eksperimentai. Įvertinimą apsunkina
savybių kitimas laike, nes industrializacija ir populiacijos
augimas sąlygoja aerozolio prigimties kitimą – klimato šiltėjimas
veikia biologinį Žemės aktyvumą, kuris savo ruožtu veikia organinę
aerozolio sudėtį. Šiame darbe apžvelgtos esamos žinios apie
organinio aerozolio reikšmę globaliniame klimato modeliavime ir
nustatytos prioritetinės tyrimų sritys.
References / Nuorodos
[1] IPCC, 2001, Climate Change 2001: The Scientific Basis,
Contribution of Working Group I to the Third Assessment Report of
the Intergovernmental Panel on Climate Change, eds. J.T.
Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.M. van der Linden, X.
Dai, K. Maskell, C.A. Johnson (Cambridge University Press,
Cambridge, UK and New York, NY, USA, 2001), 881pp
[2] V. Ramanathan, P.J. Crutzen, J.T. Kiehl, and D. Rosenfeld,
Atmosphere – aerosols, climate, and the hydrological cycle, Science
294, 2119–2124 (2001),
http://dx.doi.org/10.1126/science.1064034
[3] P. Leahy, G. Kiely, and T.M. Scanlon, Managed grasslands: A
greenhouse gas sink or source? Geophys. Res. Lett. 31,
L20507 (2004),
http://dx.doi.org/10.1029/2004GL021161
[4] S.A. Twomey, M. Piepgrass, and T.L. Wolfe, An assessment of the
impact of pollution on the global albedo, Tellus 36B,
356–366 (1984),
http://dx.doi.org/10.1111/j.1600-0889.1984.tb00254.x
[5] R.J. Charlson, S.E. Schwartz, J.M. Hales, R.D. Cess, J.A.
Coakley, J.E. Hansen, and D.J. Hofmann, Climate forcing by
anthropogenic aerosols, Science 255, 423–430 (1992),
http://dx.doi.org/10.1126/science.255.5043.423
[6] Y.J. Kaufman and R.S. Fraser, Confirmation of the smoke
particles effects on clouds and climate, Science 277,
1636–1639 (1997),
http://dx.doi.org/10.1126/science.277.5332.1636
[7] Y.J. Kaufman, D. Tanre, and O. Boucher, A satellite view of
aerosols in the climate system, Nature 419, 215–223 (2002),
http://dx.doi.org/10.1038/nature01091
[8] J.P. Putaud, F. Raes, R. Van Dingenen, E. Bruggemann, M.C.
Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Huglin, P. Laj, G.
Lorbeer, W. Maenhaut, N. Mihalopoulos, K. Muller, X. Querol, S.
Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Torseth, and
A. Wiedensohler, A European aerosol phenomenology-2: Chemical
characteristics of particulate matter at kerbside, urban, rural and
background sites in Europe, Atmos. Environ. 38, 2579–2595
(2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.01.041
[9] G.C. Roberts, M.O. Andreae, J. Zhou, and P. Artaxo, Cloud
condensation nuclei in the Amazon basin: “Marine” conditions over a
continent? Geophys. Res. Lett. 28, 2807–2810 (2001),
http://dx.doi.org/10.1029/2000GL012585
[10] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J.
Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J.
Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J.
Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis,
E. Vignati, E.G. Stephanou, and J. Wilson, Organic aerosol and
global climate modelling: A review, Atmos. Chem. Phys. 5,
1053–1123 (2005),
http://dx.doi.org/10.5194/acp-5-1053-2005
[11] C.D. O'Dowd, Biogenic coastal aerosol production and its
influence on aerosol radiative properties, J. Geophys. Res. 106,
1545–1550 (2001),
http://dx.doi.org/10.1029/2000JD900423
[12] Y.F. Luo, D.R. Lu, X.J. Zhou, W.L. Li, and Q. He,
Characteristics of the spatial distribution and yearly variation of
aerosol optical depth over China in last 30 years, J. Geophys. Res.
106, 14501–14513 (2001),
http://dx.doi.org/10.1029/2001JD900030
[13] O. Krüger and H. Grassl, The indirect aerosol effect over
Europe, Geophys. Res. Lett. 29, (2002),
http://dx.doi.org/10.1029/2001GL014081
[14] M. Wild, A. Ohmura, H. Gilgen, and D. Rosenfeld, On the
consistency of trends in radiation and temperature records and
implications for the global hydrological cycle, Geophys. Res. Lett.
31, L11201 (2004),
http://dx.doi.org/10.1029/2003GL019188
[15] T.F. Eck, B.N. Holben, D.E. Ward, O. Dubovik, J.S. Reid, A.
Smirnov, M.M. Mukelabai, N.C. Hsu, N.T. O'Neill, and I. Slutsker,
Characterization of the optical properties of biomass burning
aerosols in Zambia during the 1997 ZIBBEE field campaign, J.
Geophys. Res. 106, 3425–3448 (2001),
http://dx.doi.org/10.1029/2000JD900555
[16] O. Dubovik, B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D.
King, D. Tanre, and I. Slutsker, Variability of absorption and
optical properties of key aerosol types observed in worldwide
locations, J. Atmos. Sci. 59, 590–608 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
[17] J.M. Prospero, P. Ginoux, O. Torres, S.E. Nicholson, and T.E.
Gill, Environmental characterization of global sources of
atmospheric soil dust identified with the Nimbus 7 Total Ozone
Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys.
40, 1002 (2002),
http://dx.doi.org/10.1029/2000RG000095
[18] A.D. Clarke and V.N. Kapustin, Pacific aerosol survey, part 1:
A decade of data on particle formation, transport, evolution and
mixing in the troposphere, J. Atmos. Sci. 59, 363–382
(2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0363:APASPI>2.0.CO;2
[19] Y. Gao, Y.J. Kaufman, D. Tanre, D. Kolber, and P.G. Falkowski,
Seasonal distribution of Aeolian iron fluxes to the global ocean,
Geophys. Res. Lett. 28, 29–33 (2001),
http://dx.doi.org/10.1029/2000GL011926
[20] R.J. Charlson, J.E. Lovelock, M.O. Andreae, and S.G. Warren,
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate,
Nature 326, 655–661 (1987),
http://dx.doi.org/10.1038/326655a0
[21] C.D. O'Dowd, M.H. Smith, I.E. Consterdine, and J.A. Lowe,
Marine aerosol, sea-salt, and the marine sulphur cycle: A short
review, Atmos. Environ. 31, 73–80 (1997).
http://dx.doi.org/10.1016/S1352-2310(96)00106-9
[22] C.D. O'Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea,
S. Decesari, S. Fuzzi, Y.J. Yoon, and J.P. Putaud, Biogenically
driven organic contribution to marine aerosol, Nature 431,
676–680 (2004),
http://dx.doi.org/10.1038/nature02959
[23] S.G. Jennings, Unpublished data, National University of
Ireland, Galway, Ireland (2002)
[24] U. Lohmann and J. Feichter, Global indirect aerosol effects: A
review, Atmos. Chem. Phys. 5, 715–737 (2005).,
http://dx.doi.org/10.5194/acp-5-715-2005
[25] M.R. Allen and W.J. Ingram, Constraints on future changes in
climate and the hydrological cycle, Nature 419, 224–232
(2002),
http://dx.doi.org/10.1038/nature01092
[26] S.N. Pandis, R.H. Harley, G.R. Cass, and J.H. Seinfeld,
Secondary organic aerosol formation and transport, Atmos. Environ. 26,
2269–2282 (1992),
http://dx.doi.org/10.1016/0960-1686(92)90358-R
[27] C.D. O'Dowd, P. Aalto, K. Hameri, M. Kulmala, and T. Hoffmann,
First experimental evidence of new particle formation from organic
vapours over forests, Nature 416, 497–498 (2002),
http://dx.doi.org/10.1038/416497a
[28] M. Kulmala, How particles nucleate and grow, Science 302,
1000–1001 (2003),
http://dx.doi.org/10.1126/science.1090848
[29] H. Kohler, The nucleus in the growth of hygroscopic droplets,
Trans. Faraday Soc. 32, 1152–1161 (1936),
http://dx.doi.org/10.1039/TF9363201152
[30] R.J. Charlson, J.H. Seinfeld, A. Nenes, M. Kulmala, A.
Laaksonen, and M.C. Facchini, Reshaping the theory of cloud
formation, Science 292, 2025–2026 (2001),
http://dx.doi.org/10.1126/science.1060096
[31] G. Kiss, E. Tombacz, B. Varga, T. Alsberg, and L. Persson,
Estimation of the average molecular weight of humic-like substances
isolated from fine atmospheric aerosol, Atmos. Environ. 37,
3783–3794 (2003),
http://dx.doi.org/10.1016/S1352-2310(03)00468-0
[32] M.L. Shulman, M.C. Jacobson, R.J. Charlson, R.E. Synovec, and
T.E. Young, Dissolution behavior and surface tension effects of
organic compounds in nucleating cloud droplets, Geophys. Res. Lett.
23, 277–280 (1996),
http://dx.doi.org/10.1029/95GL03810
[33] A. Guenther, C. Geron, T. Pierce, B. Lamb, P. Harley, and R.
Fall, Natural emissions of non-methane volatile organic compounds,
carbon monoxide and oxides of nitrogen from North America, Atmos.
Environ. 34, 2205–2230 (2000),
http://dx.doi.org/10.1016/S1352-2310(99)00465-3
[34] J. Beardall and J.A. Raven, The potential effects of global
climate change on microalgal photosynthesis, growth and ecology,
Phycologia 43, 26–40 (2004),
http://dx.doi.org/10.2216/i0031-8884-43-1-26.1
[35] Y.J. Yoon, D. Ceburnis, F. Cavalli, O. Jourdan, J.P. Putaud,
M.C. Facchini, S. Descari, S. Fuzzi, S.G. Jennings, and C.D. O'Dowd,
Seasonal characteristics of the physico-chemical properties of North
Atlantic marine atmospheric aerosols, Submitted to J. Geophys. Res.,
http://dx.doi.org/10.1029/2005JD007044
[36] P.A. Raymond, The composition and transport of organic carbon
in rainfall: Insights from the natural (13C and 14C)
isotopes of carbon, Geophys. Res. Lett. 32, L14402 (2005),
http://dx.doi.org/10.1029/2005GL022879
[37] W.D. Dick, P. Saxena, and P.H. McMurry, Estimation of water
uptake by organic compounds in submicron aerosols measured during
the Southern Aerosol and Visibility Study, J. Geophys. Res. 105,
1471–1479 (2000),
http://dx.doi.org/10.1029/1999JD901001