[PDF]    http://dx.doi.org/10.3952/lithjphys.45510

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 323–332 (2005)

Review

AEROSOLS, ORGANIC MATTER, AND IMPACT ON CLIMATE
D. Čeburnisa,b, J. Ovadnevaitėa, K. Kvietkusa, V. Remeikisa, and V. Ulevičiusa
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: jurgita@ar.fi.lt
bDepartment of Experimental Physics, National University of Ireland, Galway, University Road, Galway, Ireland

Received 29 August 2005

Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Light-absorbing aerosols can also cool the surface, but warm the atmosphere. All these aerosol processes affect temperature profile of the atmosphere and, along with the role of aerosols as cloud condensation nuclei, affect the hydrologic cycle, through changes in cloud properties and cover as well as precipitation. Aerosol feedback processes have been proved to be difficult to model due to the spatial, temporal, and morphological complexity of aerosols. Continuous observations from satellites, international field experiments, networks of ground-based measurements are required to accurately study aerosol distribution, composition, and transformation mechanisms. Industrialization and expanding population significantly contribute to the organic nature of aerosols. The warming climate has an impact on the Earth’s biological activity, which in turn is significantly contributing to the aerosol organic composition. The present paper reviews existing knowledge of organic aerosol, its importance to global climate modelling, and defines priority research areas.
Keywords: aerosols, organic matter, climate forcing, biogenic emissions, primary and secondary sources
PACS: 91.40.Dr, 42.68.Jg, 92.60 Mt, 92.20 Bk


AEROZOLIS, ORGANINIAI JUNGINIAI IR ĮTAKA KLIMATUI
D. Čeburnisa,b, J. Ovadnevaitėa, K. Kvietkusa, V. Remeikisa, V. Ulevičiusa
aFizikos institutas, Vilnius, Lietuva
bAirijos nacionalinis universitetas, Galway, Airija

Aerozolių ryšys su klimato kaita ir atmosferos hidrologiniu ciklu yra pakankamai painus, nes atspindėdami saulės šviesą jie sąlygoja klimato atšalimą, tačiau sugerdami energiją šildo atmosferą ir keičia temperatūros profilį, o kartu, virsdami debesų kondensacijos branduoliais, veikia hidrologinį atmosferos ciklą, debesuotumą, debesų savybes ir kritulių susidarymą. Aerozolio poveikis labai priklauso nuo jo tipo ir sudėties. Todėl sunku minėtus mechanizmus ir grįžtamuosius ryšius modeliuoti. Be to, aerozoliai yra įvairiausių tipų, pradedant nuo dykumų dulkių ir vulkaninių pelenų ir baigiant miestų užterštumu. Aerozolių koncentracijos smarkiai kinta laike ir erdvėje, todėl nuosekliems aerozolių pasiskirstymo, sudėties ir transformacijos tyrimams reikalingas stebėjimo stočių tinklas, Žemės palydovai ir tiksliniai tiesioginiai eksperimentai. Įvertinimą apsunkina savybių kitimas laike, nes industrializacija ir populiacijos augimas sąlygoja aerozolio prigimties kitimą – klimato šiltėjimas veikia biologinį Žemės aktyvumą, kuris savo ruožtu veikia organinę aerozolio sudėtį. Šiame darbe apžvelgtos esamos žinios apie organinio aerozolio reikšmę globaliniame klimato modeliavime ir nustatytos prioritetinės tyrimų sritys.


References / Nuorodos


[1] IPCC, 2001, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.M. van der Linden, X. Dai, K. Maskell, C.A. Johnson (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2001), 881pp
[2] V. Ramanathan, P.J. Crutzen, J.T. Kiehl, and D. Rosenfeld, Atmosphere – aerosols, climate, and the hydrological cycle, Science 294, 2119–2124 (2001),
http://dx.doi.org/10.1126/science.1064034
[3] P. Leahy, G. Kiely, and T.M. Scanlon, Managed grasslands: A greenhouse gas sink or source? Geophys. Res. Lett. 31, L20507 (2004),
http://dx.doi.org/10.1029/2004GL021161
[4] S.A. Twomey, M. Piepgrass, and T.L. Wolfe, An assessment of the impact of pollution on the global albedo, Tellus 36B, 356–366 (1984),
http://dx.doi.org/10.1111/j.1600-0889.1984.tb00254.x
[5] R.J. Charlson, S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, J.E. Hansen, and D.J. Hofmann, Climate forcing by anthropogenic aerosols, Science 255, 423–430 (1992),
http://dx.doi.org/10.1126/science.255.5043.423
[6] Y.J. Kaufman and R.S. Fraser, Confirmation of the smoke particles effects on clouds and climate, Science 277, 1636–1639 (1997),
http://dx.doi.org/10.1126/science.277.5332.1636
[7] Y.J. Kaufman, D. Tanre, and O. Boucher, A satellite view of aerosols in the climate system, Nature 419, 215–223 (2002),
http://dx.doi.org/10.1038/nature01091
[8] J.P. Putaud, F. Raes, R. Van Dingenen, E. Bruggemann, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Huglin, P. Laj, G. Lorbeer, W. Maenhaut, N. Mihalopoulos, K. Muller, X. Querol, S. Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Torseth, and A. Wiedensohler, A European aerosol phenomenology-2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ. 38, 2579–2595 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.01.041
[9] G.C. Roberts, M.O. Andreae, J. Zhou, and P. Artaxo, Cloud condensation nuclei in the Amazon basin: “Marine” conditions over a continent? Geophys. Res. Lett. 28, 2807–2810 (2001),
http://dx.doi.org/10.1029/2000GL012585
[10] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis, E. Vignati, E.G. Stephanou, and J. Wilson, Organic aerosol and global climate modelling: A review, Atmos. Chem. Phys. 5, 1053–1123 (2005),
http://dx.doi.org/10.5194/acp-5-1053-2005
[11] C.D. O'Dowd, Biogenic coastal aerosol production and its influence on aerosol radiative properties, J. Geophys. Res. 106, 1545–1550 (2001),
http://dx.doi.org/10.1029/2000JD900423
[12] Y.F. Luo, D.R. Lu, X.J. Zhou, W.L. Li, and Q. He, Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years, J. Geophys. Res. 106, 14501–14513 (2001),
http://dx.doi.org/10.1029/2001JD900030
[13] O. Krüger and H. Grassl, The indirect aerosol effect over Europe, Geophys. Res. Lett. 29, (2002),
http://dx.doi.org/10.1029/2001GL014081
[14] M. Wild, A. Ohmura, H. Gilgen, and D. Rosenfeld, On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle, Geophys. Res. Lett. 31, L11201 (2004),
http://dx.doi.org/10.1029/2003GL019188
[15] T.F. Eck, B.N. Holben, D.E. Ward, O. Dubovik, J.S. Reid, A. Smirnov, M.M. Mukelabai, N.C. Hsu, N.T. O'Neill, and I. Slutsker, Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign, J. Geophys. Res. 106, 3425–3448 (2001),
http://dx.doi.org/10.1029/2000JD900555
[16] O. Dubovik, B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanre, and I. Slutsker, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci. 59, 590–608 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
[17] J.M. Prospero, P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys. 40, 1002 (2002),
http://dx.doi.org/10.1029/2000RG000095
[18] A.D. Clarke and V.N. Kapustin, Pacific aerosol survey, part 1: A decade of data on particle formation, transport, evolution and mixing in the troposphere, J. Atmos. Sci. 59, 363–382 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0363:APASPI>2.0.CO;2
[19] Y. Gao, Y.J. Kaufman, D. Tanre, D. Kolber, and P.G. Falkowski, Seasonal distribution of Aeolian iron fluxes to the global ocean, Geophys. Res. Lett. 28, 29–33 (2001),
http://dx.doi.org/10.1029/2000GL011926
[20] R.J. Charlson, J.E. Lovelock, M.O. Andreae, and S.G. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature 326, 655–661 (1987),
http://dx.doi.org/10.1038/326655a0
[21] C.D. O'Dowd, M.H. Smith, I.E. Consterdine, and J.A. Lowe, Marine aerosol, sea-salt, and the marine sulphur cycle: A short review, Atmos. Environ. 31, 73–80 (1997).
http://dx.doi.org/10.1016/S1352-2310(96)00106-9
[22] C.D. O'Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y.J. Yoon, and J.P. Putaud, Biogenically driven organic contribution to marine aerosol, Nature 431, 676–680 (2004),
http://dx.doi.org/10.1038/nature02959
[23] S.G. Jennings, Unpublished data, National University of Ireland, Galway, Ireland (2002)
[24] U. Lohmann and J. Feichter, Global indirect aerosol effects: A review, Atmos. Chem. Phys. 5, 715–737 (2005).,
http://dx.doi.org/10.5194/acp-5-715-2005
[25] M.R. Allen and W.J. Ingram, Constraints on future changes in climate and the hydrological cycle, Nature 419, 224–232 (2002),
http://dx.doi.org/10.1038/nature01092
[26] S.N. Pandis, R.H. Harley, G.R. Cass, and J.H. Seinfeld, Secondary organic aerosol formation and transport, Atmos. Environ. 26, 2269–2282 (1992),
http://dx.doi.org/10.1016/0960-1686(92)90358-R
[27] C.D. O'Dowd, P. Aalto, K. Hameri, M. Kulmala, and T. Hoffmann, First experimental evidence of new particle formation from organic vapours over forests, Nature 416, 497–498 (2002),
http://dx.doi.org/10.1038/416497a
[28] M. Kulmala, How particles nucleate and grow, Science 302, 1000–1001 (2003),
http://dx.doi.org/10.1126/science.1090848
[29] H. Kohler, The nucleus in the growth of hygroscopic droplets, Trans. Faraday Soc. 32, 1152–1161 (1936),
http://dx.doi.org/10.1039/TF9363201152
[30] R.J. Charlson, J.H. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M.C. Facchini, Reshaping the theory of cloud formation, Science 292, 2025–2026 (2001),
http://dx.doi.org/10.1126/science.1060096
[31] G. Kiss, E. Tombacz, B. Varga, T. Alsberg, and L. Persson, Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol, Atmos. Environ. 37, 3783–3794 (2003),
http://dx.doi.org/10.1016/S1352-2310(03)00468-0
[32] M.L. Shulman, M.C. Jacobson, R.J. Charlson, R.E. Synovec, and T.E. Young, Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett. 23, 277–280 (1996),
http://dx.doi.org/10.1029/95GL03810
[33] A. Guenther, C. Geron, T. Pierce, B. Lamb, P. Harley, and R. Fall, Natural emissions of non-methane volatile organic compounds, carbon monoxide and oxides of nitrogen from North America, Atmos. Environ. 34, 2205–2230 (2000),
http://dx.doi.org/10.1016/S1352-2310(99)00465-3
[34] J. Beardall and J.A. Raven, The potential effects of global climate change on microalgal photosynthesis, growth and ecology, Phycologia 43, 26–40 (2004),
http://dx.doi.org/10.2216/i0031-8884-43-1-26.1
[35] Y.J. Yoon, D. Ceburnis, F. Cavalli, O. Jourdan, J.P. Putaud, M.C. Facchini, S. Descari, S. Fuzzi, S.G. Jennings, and C.D. O'Dowd, Seasonal characteristics of the physico-chemical properties of North Atlantic marine atmospheric aerosols, Submitted to J. Geophys. Res.,
http://dx.doi.org/10.1029/2005JD007044
[36] P.A. Raymond, The composition and transport of organic carbon in rainfall: Insights from the natural (13C and 14C) isotopes of carbon, Geophys. Res. Lett. 32, L14402 (2005),
http://dx.doi.org/10.1029/2005GL022879
[37] W.D. Dick, P. Saxena, and P.H. McMurry, Estimation of water uptake by organic compounds in submicron aerosols measured during the Southern Aerosol and Visibility Study, J. Geophys. Res. 105, 1471–1479 (2000),
http://dx.doi.org/10.1029/1999JD901001