[PDF]    http://dx.doi.org/10.3952/lithjphys.45511

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 383–391 (2005)


EVALUATION OF THE RADIOLOGICAL CONSEQUENCES OF 14C DUE TO CONTAMINATED IGNALINA NPP GRAPHITE INCINERATION
E. Maceikaa, V. Remeikisa, D. Anciusa, and D. Ridikasb
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: emaceika@ar.fi.lt
bC.E.A. Saclay, DSM / DAPNIA / SPhN, F-91191 Gif-sur-Yvette, Cedex, France

Received 26 May 2005

After decommissioning of Unit 1 of the Ignalina Nuclear Power Plant, the problem of the radioactive waste management emerged. Among radioactive waste there is an inventory of about 1700 tons of the graphite containing 14C radioisotope as an activation product. The estimates show that the maximal total inventory of 14C in graphite from Unit 1 is around 7 · 1014 Bq. One of the possible ways for utilization of the graphite is its incineration in the radioactive waste processing plant. Unfortunately, in this case a significant amount of the radionuclide would be released into the atmosphere in the form of CO2 and the released radiocarbon would cause additional exposure of the population. Possible radiological consequences for the Lithuanian inhabitants are evaluated using the model of radiocarbon dispersion in the environment and considering several scenarios of the graphite incineration. Dispersion of the incineration gas is modelled using the Gaussian dispersion model. Assimilation of CO2 by the vegetation due to photosynthesis as well as washout of CO2 from the atmosphere by rain, uptake of the deposited 14C by the plants from soil, and the eventual contamination of food products are considered. An estimated additional exposure effective dose to the critical group of the local population due to continuous releases of the total inventory of 14C from the incinerator is of the order of 2.7 mSv. The consumption of the contaminated locally produced food products is the main contribution to the dose. Such continuous incineration of graphite would be acceptable if it were extended for at least 14 years in order not to exceed the annual dose limit of 0.2 mSv·y−1. The incineration of graphite would cause the least radiological consequences if it functioned only in the dark time of the day or in winter when plants do not perform photosynthesis. In this case the effective dose for the population would be of the order of 5.2 μSv. World population would receive an average lifetime (∼50 years) dose of 0.43 μSv per person which is negligibly small.
Keywords: radioactive waste management, graphite incineration, 14C, modelling, exposure doses
PACS: 28.41.Kw, 28.20.Fc, 87.52.Tr.
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


14C IZOTOPU UŽTERŠTO IGNALINOS AE GRAFITO DEGINIMO RADIACINIŲ PASEKMIŲ VERTINIMAS
E. Maceikaa, V. Remeikisa, D. Anciusa, and D. Ridikasb
aFizikos institutas, Vilnius, Lietuva
bC.E.A. Saclay, Gif-sur-Yvette, Prancūzija

Nutraukus Ignalinos AE pirmojo bloko reaktoriaus eksploataciją, aktualia tapo radioaktyviųjų atliekų šalinimo problema. Be kitų radioaktyviųjų atliekų, kiekviename reaktoriuje yra apie 1700 tonų grafito, kuris užterštas 14C radioizotopu. Maksimalus 14C radionuklido įvertintas aktyvumas pirmojo bloko reaktoriaus grafite yra maždaug 7·1014 Bq. Vienas iš galimų šio grafito utilizacijos būdų yra jo sudeginimas specialiame įrenginyje. Tokiu atveju į atmosferą būtų išmesti nemaži 14C radionuklido kiekiai CO2 dujose. Į aplinką patekusi radioaktyvioji anglis sukeltų papildomą gyventojų apšvitą. Galimos radiacinės pasekmės Lietuvos gyventojams įvertintos modeliuojant radioaktyviosios anglies sklaidą aplinkoje įvairiems grafito deginimo scenarijams. Deginimo metu susidariusi dujų sklaida atmosferoje modeliuojama taikant Gauso modelį. Įvertinama CO2 asimiliacija augalams vykdant fotosintezę, CO2 išplovimas iš atmosferos lietumi, iškritusios 14C pereiga iš dirvožemio į augmeniją ir maisto produktų tarša. Nustatyta, kad nepertraukiamai deginant grafitą specialiame įrenginyje, kritinė vietinių gyventojų grupė (gyvenančių už 1 km nuo šaltinio) papildomai gautų apie 2,7 mSv efektinę apšvitos dozę. Didžiausią dozės dalį lemia užterštų vietinių maisto produktų vartojimas. Toks grafito utilizacijos būdas būtų priimtinas (neviršytų 0,2 mSv·metai−1), jeigu visas pirmojo bloko reaktoriaus grafitas būtų sudegintas ne trumpiau kaip per 14 metų. Mažiausias radiacines pasekmes gyventojams turėtų reaktoriaus grafito deginimas žiemą arba tamsiu paros metu (kai nevyksta fotosintezė). Toks grafito sudeginimo scenarijus lemtų 5,2 μSv vidutinę efektinę dozę kritinei vietinių gyventojų grupei. Papildoma vidutinė apšvitos dozė planetos gyventojui neviršytų 0,43 μSv per gyvenimą (50 metų).


References / Nuorodos


[1] S. Motiejūnas, Clearance levels of certain radionuclides for waste from decommissioning of Ignalina NPP to be disposed of in a landfill, Environmental Chem. Phys. 26(1), 9–13 (2004)
[2] S.C. Shepard, B.D. Amiro, M.I. Shepard, M. Stephenson, R. Zach, and G.A. Bird, Carbon-14 in the biosphere: Modelling and supporting research for the Canadian nuclear fuel waste management program, Waste Management 14(5), 445–456 (1994),
http://dx.doi.org/10.1016/0956-053X(94)90048-5
[3] M. Dubourg, The carbon 14 cycle, Carbone 14 SARL, Le Mensil Saint Denis, France,
http://www.iaea.or.at/inis/aws/htgr/fulltext/29059918.pdf
[4] Guidance for Assessing the Potential Impact of Radionuclide Discharges to the Environment, Joint Food Safety and Standards Group, Radiological Safety and Nutrition Division, ed. No. 6, MAFF / JFSSG (1999),
http://archive.food.gov.uk/maff/pdf/imprad.pdf
[5] D. Ancius, D. Ridikas, V. Remeikis, A. Plukis, R. Plukienė, and M. Cometto, Radiological characteristics of the irradiated graphite from RBMK-1500 reactor, Environmental Chem. Phys. 26(4), 140–147 (2004)
[6] T. Nedveckaitė, Radiation Protection in Lithuania (Kriventa, Vilnius, 2004) [in Lithuanian]
[7] Hygiene Standard HN 73:2001, Basic Standard of Radiation Protection, adopted by the Order No. 663, Minister of Health Care, Valstybės žinios Nr. 11-388 (2002) [in Lithuanian]
[8] Consumption of Foodstuffs (Department of Statistics to the Government of the Republic of Lithuania, Vilnius, 2004)
[9] Pollutants in a Multimedia Environment, ed. Y. Cohen (Plenum Press, New York, 1980)
[10] P.S. Liss, Process of gas exchange across an air–water interface, Deep-Sea Res. 20(3), 221–238 (1973),
http://dx.doi.org/10.1016/0011-7471(73)90013-2
[11] C. Yu, A.J. Zielen, J.J. Cheng, et al., Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD, ANL / EAD / LD-2 (Argonne National Laboratory, Argonne IL, 1993)
[12] J.G. Titley, T. Cabianca, G. Lawson, S.F. Mobbs, and J. Simmonds, Improved Global Dispersion Models for I-129 and C-14, EUR Report 15880 EN (CEC, Luxembourg, 1995)
[13] United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2000 Report, Vol. 1 Sources (UNSCEAR Secretariat, Vienna, 2001)
[14] M.G.R. Cannell and M.D. Hooper, The Greenhouse Effect and Terrestrial Ecosystems of the UK, Institute of Terrestrial Ecology, Grange-over-Sands, Research Publication No. 4 (HMSO, London, 1990)
[15] W.R. Emanuel, G.G. Killough, and J.S. Olson, Modelling the circulation of carbon in the world’s terrestrial ecosystems, in: Carbon Cycle Modelling, ed. B. Bolin (John Wiley & Sons, New York, 1981)
[16] Order No. 60 On the Limitation of Radioactive Discharges from Nuclear Facilities, on the Permitting of Discharges, and on Radiological Monitoring (LAND 42-2001) [in Lithuanian]