[PDF]
http://dx.doi.org/10.3952/lithjphys.45511
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 383–391 (2005)
EVALUATION OF THE RADIOLOGICAL
CONSEQUENCES OF 14C DUE TO CONTAMINATED IGNALINA NPP
GRAPHITE INCINERATION ∗
E. Maceikaa, V. Remeikisa, D. Anciusa,
and D. Ridikasb
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: emaceika@ar.fi.lt
bC.E.A. Saclay, DSM / DAPNIA / SPhN, F-91191
Gif-sur-Yvette, Cedex, France
Received 26 May 2005
After decommissioning of Unit 1 of the Ignalina
Nuclear Power Plant, the problem of the radioactive waste
management emerged. Among radioactive waste there is an inventory
of about 1700 tons of the graphite containing 14C
radioisotope as an activation product. The estimates show that the
maximal total inventory of 14C in graphite from Unit 1
is around 7 · 1014 Bq. One of the possible ways for
utilization of the graphite is its incineration in the radioactive
waste processing plant. Unfortunately, in this case a significant
amount of the radionuclide would be released into the atmosphere
in the form of CO2 and the released radiocarbon would
cause additional exposure of the population. Possible radiological
consequences for the Lithuanian inhabitants are evaluated using
the model of radiocarbon dispersion in the environment and
considering several scenarios of the graphite incineration.
Dispersion of the incineration gas is modelled using the Gaussian
dispersion model. Assimilation of CO2 by the
vegetation due to photosynthesis as well as washout of CO2
from the atmosphere by rain, uptake of the deposited 14C
by the plants from soil, and the eventual contamination of food
products are considered. An estimated additional exposure
effective dose to the critical group of the local population due
to continuous releases of the total inventory of 14C
from the incinerator is of the order of 2.7 mSv. The consumption
of the contaminated locally produced food products is the main
contribution to the dose. Such continuous incineration of graphite
would be acceptable if it were extended for at least 14 years in
order not to exceed the annual dose limit of 0.2 mSv·y−1.
The incineration of graphite would cause the least radiological
consequences if it functioned only in the dark time of the day or
in winter when plants do not perform photosynthesis. In this case
the effective dose for the population would be of the order of 5.2
μSv. World population would receive an average lifetime
(∼50 years) dose of 0.43 μSv per person which is
negligibly small.
Keywords: radioactive waste management, graphite
incineration, 14C, modelling, exposure doses
PACS: 28.41.Kw, 28.20.Fc, 87.52.Tr.
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
14C IZOTOPU UŽTERŠTO
IGNALINOS AE GRAFITO DEGINIMO RADIACINIŲ PASEKMIŲ VERTINIMAS
E. Maceikaa, V. Remeikisa, D. Anciusa,
and D. Ridikasb
aFizikos institutas, Vilnius, Lietuva
bC.E.A. Saclay, Gif-sur-Yvette, Prancūzija
Nutraukus Ignalinos AE pirmojo bloko
reaktoriaus eksploataciją, aktualia tapo radioaktyviųjų atliekų
šalinimo problema. Be kitų radioaktyviųjų atliekų, kiekviename
reaktoriuje yra apie 1700 tonų grafito, kuris užterštas 14C
radioizotopu. Maksimalus 14C radionuklido įvertintas
aktyvumas pirmojo bloko reaktoriaus grafite yra maždaug 7·1014
Bq. Vienas iš galimų šio grafito utilizacijos būdų yra jo
sudeginimas specialiame įrenginyje. Tokiu atveju į atmosferą būtų
išmesti nemaži 14C radionuklido kiekiai CO2
dujose. Į aplinką patekusi radioaktyvioji anglis sukeltų papildomą
gyventojų apšvitą. Galimos radiacinės pasekmės Lietuvos
gyventojams įvertintos modeliuojant radioaktyviosios anglies
sklaidą aplinkoje įvairiems grafito deginimo scenarijams. Deginimo
metu susidariusi dujų sklaida atmosferoje modeliuojama taikant
Gauso modelį. Įvertinama CO2 asimiliacija augalams
vykdant fotosintezę, CO2 išplovimas iš atmosferos
lietumi, iškritusios 14C pereiga iš dirvožemio į
augmeniją ir maisto produktų tarša. Nustatyta, kad nepertraukiamai
deginant grafitą specialiame įrenginyje, kritinė vietinių
gyventojų grupė (gyvenančių už 1 km nuo šaltinio) papildomai gautų
apie 2,7 mSv efektinę apšvitos dozę. Didžiausią dozės dalį lemia
užterštų vietinių maisto produktų vartojimas. Toks grafito
utilizacijos būdas būtų priimtinas (neviršytų 0,2 mSv·metai−1),
jeigu visas pirmojo bloko reaktoriaus grafitas būtų sudegintas ne
trumpiau kaip per 14 metų. Mažiausias radiacines pasekmes
gyventojams turėtų reaktoriaus grafito deginimas žiemą arba tamsiu
paros metu (kai nevyksta fotosintezė). Toks grafito sudeginimo
scenarijus lemtų 5,2 μSv vidutinę efektinę dozę kritinei
vietinių gyventojų grupei. Papildoma vidutinė apšvitos dozė
planetos gyventojui neviršytų 0,43 μSv per gyvenimą (50
metų).
References / Nuorodos
[1] S. Motiejūnas, Clearance levels of certain radionuclides for
waste from decommissioning of Ignalina NPP to be disposed of in a
landfill, Environmental Chem. Phys. 26(1), 9–13 (2004)
[2] S.C. Shepard, B.D. Amiro, M.I. Shepard, M. Stephenson, R. Zach,
and G.A. Bird, Carbon-14 in the biosphere: Modelling and supporting
research for the Canadian nuclear fuel waste management program,
Waste Management 14(5), 445–456 (1994),
http://dx.doi.org/10.1016/0956-053X(94)90048-5
[3] M. Dubourg, The carbon 14 cycle, Carbone 14 SARL, Le Mensil
Saint Denis, France,
http://www.iaea.or.at/inis/aws/htgr/fulltext/29059918.pdf
[4] Guidance for Assessing the Potential Impact of Radionuclide
Discharges to the Environment, Joint Food Safety and Standards
Group, Radiological Safety and Nutrition Division, ed. No. 6, MAFF /
JFSSG (1999),
http://archive.food.gov.uk/maff/pdf/imprad.pdf
[5] D. Ancius, D. Ridikas, V. Remeikis, A. Plukis, R. Plukienė, and
M. Cometto, Radiological characteristics of the irradiated graphite
from RBMK-1500 reactor, Environmental Chem. Phys. 26(4),
140–147 (2004)
[6] T. Nedveckaitė, Radiation Protection in Lithuania
(Kriventa, Vilnius, 2004) [in Lithuanian]
[7] Hygiene Standard HN 73:2001, Basic Standard of Radiation
Protection, adopted by the Order No. 663, Minister of Health
Care, Valstybės žinios Nr. 11-388 (2002) [in Lithuanian]
[8] Consumption of Foodstuffs (Department of Statistics to
the Government of the Republic of Lithuania, Vilnius, 2004)
[9] Pollutants in a Multimedia Environment, ed. Y. Cohen
(Plenum Press, New York, 1980)
[10] P.S. Liss, Process of gas exchange across an air–water
interface, Deep-Sea Res. 20(3), 221–238 (1973),
http://dx.doi.org/10.1016/0011-7471(73)90013-2
[11] C. Yu, A.J. Zielen, J.J. Cheng, et al., Manual for
Implementing Residual Radioactive Material Guidelines Using RESRAD,
ANL / EAD / LD-2 (Argonne National Laboratory, Argonne IL, 1993)
[12] J.G. Titley, T. Cabianca, G. Lawson, S.F. Mobbs, and J.
Simmonds, Improved Global Dispersion Models for I-129 and C-14,
EUR Report 15880 EN (CEC, Luxembourg, 1995)
[13] United Nations Scientific Committee on the Effects of Atomic
Radiation, UNSCEAR 2000 Report, Vol. 1 Sources (UNSCEAR
Secretariat, Vienna, 2001)
[14] M.G.R. Cannell and M.D. Hooper, The Greenhouse Effect and
Terrestrial Ecosystems of the UK, Institute of Terrestrial
Ecology, Grange-over-Sands, Research Publication No. 4 (HMSO,
London, 1990)
[15] W.R. Emanuel, G.G. Killough, and J.S. Olson, Modelling the
circulation of carbon in the world’s terrestrial ecosystems, in: Carbon
Cycle Modelling, ed. B. Bolin (John Wiley & Sons, New
York, 1981)
[16] Order No. 60 On the Limitation of Radioactive Discharges
from Nuclear Facilities, on the Permitting of Discharges, and on
Radiological Monitoring (LAND 42-2001) [in Lithuanian]