[PDF]
http://dx.doi.org/10.3952/lithjphys.45602
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 437–443 (2005)
CERN LARGE HADRON COLLIDER
PROJECTS TO IMPROVE THE RADIATION HARDNESS OF IONIZING RADIATION
DETECTORS: THE ROLE AND CONTROL OF DEFECTS IN Si AND POTENTIAL
OF GaN
J. Vaitkusa, A. Blueb, W. Cunninghamb,
E. Gaubasa, J. Grantb, K. Jarašiūnasa,
A. Kadysa, V. Kalendraa, V. Kažukauskasa,
P. Pobedinskasa, V. O’Sheab, K. Smithb,
J. Storastaa, and A. Žukauskasa
aInstitute of Materials Science and Applied
Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius,
Lithuania
E-mail: juozas.vaitkus@ff.vu.lt
bDepartment of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, Scotland, UK
Received 14 November 2005
We review recent contributions of Vilnius
University teams in collaboration with others participating in the
CERN RD39 and RD50 collaborations. These address detector
technologies suitable for the proposed Super-LHC facility, capable
of withstanding radiation levels arising from a luminosity of 1035
cm−2·s−1 which will present severe
challenges to current tracking detector technologies. Candidates
among those technologies for use as particle tracking detectors
are cryogenic operation and/or defect engineering of Si detectors
and GaN – a new semiconductor material for use as a particle
tracking detector. The use of advanced methods for material
characterization and the investigation of semi-insulating GaN are
described in this paper. Peculiarities related to trap recognition
in the temperature dependence of photoconductivity kinetics and
recombination parameters in highly irradiated Si are presented,
together with an overview of the promise of GaN as a radiation
hard material.
Keywords: recombination and trapping of charge carriers,
III–V semiconductors, GaN photoluminescence, interaction of
particles and radiation with semiconductors, methods of materials
testing and analysis
PACS: 72.20.Jv, 78.55.Cr, 78.70.-g, 81.70.-q
CERN’O DIDŽIOJO HADRONŲ
KOLAIDERIO PROJEKTAI, SIEKIANT PAGERINTI JONIZUOJANČIOS
SPINDULIUOTĖS DETEKTORIŲ RADIACINĮ ATSPARUMĄ: DEFEKTŲ SILICIO
KRISTALUOSE VAIDMUO BEI JO KONTROLĖ IR GaN – NAUJA MEDŽIAGA
DETEKTORIAMS
J. Vaitkusa, A. Blueb, W. Cunninghamb,
E. Gaubasa, J. Grantb, K. Jarašiūnasa,
A. Kadysa, V. Kalendraa, V. Kažukauskasa,
P. Pobedinskasa, V. O’Sheab, K. Smithb,
J. Storastaa, A. Žukauskasa
aVilniaus universiteto Medžiagotyros ir taikomųjų
mokslų institutas, Vilnius, Lietuva
bGlazgo universitetas, Glazgas, Jungtinė
Karalystė
Apžvelgiamas pastarųjų metų Vilniaus
universiteto mokslininkų indėlis į tarptautinio bendradarbiavimo
programas, skirtas Didžiojo hadronų kolaiderio (LHC) modifikavimo
problemoms spręsti. Tai Europos branduolinių tyrimų centro CERN
programos: kriogeniniai spinduliuotės detektoriai (CERN-RD39) ir
spinduliuotei atsparūs detektoriai didelio šviesingumo
kolaideriams (CERN-RD50). Kuriami detektoriai turi patenkinti
naujos kartos kolaiderio Super-LHC reikalavimus, numatančius
galimybę dirbti didelės radiacijos, kurią iššauks didelės
energijos dalelių srautas, siekiantis 1035 cm−2s−1, fone.
Šiandieninės technologijos detektoriams tai kol kas neįmanoma. Si
detektoriai žemoje temperatūroje, detektoriai, pagaminti
panaudojant defektų reakcijas Si kristaluose ir naujos medžiagos –
GaN pritaikymas jonizuojančios spinduliuotės detektoriams yra
keliai, kuriais ieškomi būdai sukurti tinkamus eksperimentams
detektorius. Pateikiami modernizuoti puslaidininkių
charakterizavimo metodai, pagrįsti nepusiausvirių krūvininkų
relaksacijos tyrimu, ir nauji rezultatai, gauti tiriant pusiau
izoliuojantį GaN. Krūvininkų prilipimo ir rekombinacijos ypatumai
aptikti, tiriant temperatūrines fotolaidumo kinetikos
priklausomybes, bei ištirta krūvininkų gyvavimo trukmė stipriai
apšvitintame Si. Apžvelgta dabartinė būklė ir perspektyva sukurti
spinduliuotei atsparius GaN detektorius.
References / Nuorodos
[1] M. Moll, Development of radiation hard sensors for very high
luminosity colliders – CERN-RD50 project, Nucl. Instrum. Methods A
511, 97–105 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01772-8
[2] M. Bruzzi, Material engineering for the development of
ultra-radiation hard semiconductor detectors, Nucl. Instrum. Methods
A 518, 336–337 (2004),
http://dx.doi.org/10.1016/j.nima.2003.11.013
[3] T.O. Niinikoski et al. (CERN RD39 Collaboration),
Low-temperature tracking detectors, Nucl. Instrum. Methods A 520,
87–92 (2004),
http://dx.doi.org/10.1016/j.nima.2003.11.228
[4] W. Adam et al., The development of diamond tracking detectors
for the LHC, Nucl. Instrum. Methods A 514, 79–86 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.086
[5] M. Moll et al. (CERN RD50 Collaboration), Development of
radiation tolerant semiconductor detectors for the Super-LHC, Nucl.
Instrum. Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[6] D. Albertz et al., Development of GaAs Detectors for Physics at
the LHC, in: Experiments at CERN (1997), pp. 379–380
[7] D. Albertz et al., Development of GaAs Detectors for Physics at
the LHC, in: Experiments at CERN (1998), pp. 299–300
[8] J. Vaitkus, R. Baubinas, E. Gaubas, K. Jarašiūnas, R.
Jašinskaitė, V. Kažukauskas, E. Kuprusevičius, J. Matukas, V.
Palenskis, J. Storasta, M. Sūdžius, and R. Tomašiūnas, GaAs
peculiarities related with inhomogeneities and the methods for
reveal of their properties, Nucl. Instrum. Methods A 466,
39–46 (2001),
http://dx.doi.org/10.1016/S0168-9002(01)00822-1
[9] E. Gaubas, J. Vaitkus, G. Niaura, J. Härkönen, E. Tuovinen, P.
Luukka, and E. Fretwurst, Characterization of carrier recombination
and trapping processes in proton irradiated silicon by microwave
absorption transients, Nucl. Instrum. Methods A 546, 108–112
(2005),
http://dx.doi.org/10.1016/j.nima.2005.03.106
[10] J. Vaitkus, Methods for defect recognition by investigation of
photoelectrical and non-linear optical properties in semiconductors,
in: Proceedings of 2002 ROC – Lithuania Bilateral Conference on
Optoelectronics and Magnetic Materials (National Taiwan
University & Academia Sinica, 2002), pp. 1–3
[11] J. Požela, K. Požela, A. Šilėnas, V. Jucienė, L. Dapkus, V.
Jasutis, G. Tamulaitis, A. Žukauskas, and R.-A. Bendorius, The
AlGaAs light emitting particle detector, Nucl. Instrum. Methods A
434, 169–172 (1999),
http://dx.doi.org/10.1016/S0168-9002(99)00458-1
[12] J. Vaitkus, W. Cunningham, E. Gaubas, M. Rahman, S. Sakai, K.M.
Smith, and T. Wang, Semi-insulating GaN and its evaluation for alpha
particle detection, Nucl. Instrum. Methods A 509, 60–64
(2003),
http://dx.doi.org/10.1016/S0168-9002(03)01550-X
[13] J.V. Vaitkus, W. Cunningham, M. Rahman, K.M. Smith, and S.
Sakai, Semi-insulating GaN and its first tests for radiation
hardness as ionizing radiation detector, in: UV Solid-State
Light Emitters and Detectors, Proceedings of the NATO Advanced
Research Workshop, held in Vilnius, 17-21 June, 2003, eds.
M.S. Shur and A. Žukauskas, NATO Science Series II: Mathematics,
Physics and Chemistry, Vol. 144 (Kluwer Academic Publishers,
Dordrecht, 2004), pp. 279–286,
http://dx.doi.org/10.1007/978-1-4020-2103-9_24
[14] E. Gaubas, K. Kazlauskas, R. Tomašiūnas, J. Vaitkus, and A.
Žukauskas, Radiation-defect-dependent photoconductivity transients
and photoluminescence in semi-insulating GaN, Appl. Phys. Lett. 84(25),
5258–5260 (2004),
http://dx.doi.org/10.1063/1.1764939
[15] J. Vaitkus, E. Gaubas, V. Kazukauskas, A. Blue, W. Cunningham,
M. Rahman, K. Smith, and S. Sakai, A new radiation hard
semiconductor-semi-insulating GaN: Photoelectric properties, in: Physics
of Semiconductors: 27th International Conference on the Physics of
Semiconductors, eds. J. Menéndez, C.G. Van de Walle, AIP Conf.
Proc. 772, 207–208 (2005),
http://dx.doi.org/10.1063/1.1994066
[16] T. Wang, T. Shirahama, H.B. Sun, H.X. Wang, J. Bai, S. Sakai,
and H. Misawa, Influence of buffer layer and growth temperature on
the properties of an undoped GaN layer grown on sapphire substrate
by metalorganic chemical vapor deposition, Appl. Phys. Lett. 76(16),
2220–2222 (2000),
http://dx.doi.org/10.1063/1.126302
[17] D.V. Lang, Deep level transient spectroscopy: A new method to
characterize defects in semiconductors, J. Appl. Phys. 45,
3023 (1974),
http://dx.doi.org/10.1063/1.1663719
[18] J. Vaitkus and J. Viščakas, Kinetics of nonequilibrium carrier
density under weak excitation in case of two types of local levels,
Soviet Physics – Collection 12(3), 421–443 (1972) [in
Russian]
[19] E. Gaubas, Modifications of the technique for carrier lifetime
measurement in layered structures, Lithuanian J. Phys. 40,
88–93 (2000)
[20] K. Jarašiūnas and J. Vaitkus, Investigation of nonequilibrium
processes in semiconductors by the method of transient holograms,
Phys. Status Solidi A 44, 793–800 (1977),
http://dx.doi.org/10.1002/pssa.2210440250
[21] G.G. Macfarlane, T.P. McLean, J.E. Quarrington, and V. Roberts,
Exciton and phonon effects in the absorption spectra of germanium
and silicon, J. Phys. Chem. Solids 8, 388–392 (1959),
http://dx.doi.org/10.1016/0022-3697(59)90372-5