[PDF]    http://dx.doi.org/10.3952/lithjphys.45602

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 437–443 (2005)


CERN LARGE HADRON COLLIDER PROJECTS TO IMPROVE THE RADIATION HARDNESS OF IONIZING RADIATION DETECTORS: THE ROLE AND CONTROL OF DEFECTS IN Si AND POTENTIAL OF GaN
J. Vaitkusa, A. Blueb, W. Cunninghamb, E. Gaubasa, J. Grantb, K. Jarašiūnasa, A. Kadysa, V. Kalendraa, V. Kažukauskasa, P. Pobedinskasa, V. O’Sheab, K. Smithb, J. Storastaa, and A. Žukauskasa
aInstitute of Materials Science and Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: juozas.vaitkus@ff.vu.lt
bDepartment of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland, UK


Received 14 November 2005

We review recent contributions of Vilnius University teams in collaboration with others participating in the CERN RD39 and RD50 collaborations. These address detector technologies suitable for the proposed Super-LHC facility, capable of withstanding radiation levels arising from a luminosity of 1035 cm−2·s−1 which will present severe challenges to current tracking detector technologies. Candidates among those technologies for use as particle tracking detectors are cryogenic operation and/or defect engineering of Si detectors and GaN – a new semiconductor material for use as a particle tracking detector. The use of advanced methods for material characterization and the investigation of semi-insulating GaN are described in this paper. Peculiarities related to trap recognition in the temperature dependence of photoconductivity kinetics and recombination parameters in highly irradiated Si are presented, together with an overview of the promise of GaN as a radiation hard material.
Keywords: recombination and trapping of charge carriers, III–V semiconductors, GaN photoluminescence, interaction of particles and radiation with semiconductors, methods of materials testing and analysis
PACS: 72.20.Jv, 78.55.Cr, 78.70.-g, 81.70.-q


CERN’O DIDŽIOJO HADRONŲ KOLAIDERIO PROJEKTAI, SIEKIANT PAGERINTI JONIZUOJANČIOS SPINDULIUOTĖS DETEKTORIŲ RADIACINĮ ATSPARUMĄ: DEFEKTŲ SILICIO KRISTALUOSE VAIDMUO BEI JO KONTROLĖ IR GaN – NAUJA MEDŽIAGA DETEKTORIAMS
J. Vaitkusa, A. Blueb, W. Cunninghamb, E. Gaubasa, J. Grantb, K. Jarašiūnasa, A. Kadysa, V. Kalendraa, V. Kažukauskasa, P. Pobedinskasa, V. O’Sheab, K. Smithb, J. Storastaa, A. Žukauskasa
aVilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas, Vilnius, Lietuva
bGlazgo universitetas, Glazgas, Jungtinė Karalystė

Apžvelgiamas pastarųjų metų Vilniaus universiteto mokslininkų indėlis į tarptautinio bendradarbiavimo programas, skirtas Didžiojo hadronų kolaiderio (LHC) modifikavimo problemoms spręsti. Tai Europos branduolinių tyrimų centro CERN programos: kriogeniniai spinduliuotės detektoriai (CERN-RD39) ir spinduliuotei atsparūs detektoriai didelio šviesingumo kolaideriams (CERN-RD50). Kuriami detektoriai turi patenkinti naujos kartos kolaiderio Super-LHC reikalavimus, numatančius galimybę dirbti didelės radiacijos, kurią iššauks didelės energijos dalelių srautas, siekiantis 1035 cm−2s−1, fone. Šiandieninės technologijos detektoriams tai kol kas neįmanoma. Si detektoriai žemoje temperatūroje, detektoriai, pagaminti panaudojant defektų reakcijas Si kristaluose ir naujos medžiagos – GaN pritaikymas jonizuojančios spinduliuotės detektoriams yra keliai, kuriais ieškomi būdai sukurti tinkamus eksperimentams detektorius. Pateikiami modernizuoti puslaidininkių charakterizavimo metodai, pagrįsti nepusiausvirių krūvininkų relaksacijos tyrimu, ir nauji rezultatai, gauti tiriant pusiau izoliuojantį GaN. Krūvininkų prilipimo ir rekombinacijos ypatumai aptikti, tiriant temperatūrines fotolaidumo kinetikos priklausomybes, bei ištirta krūvininkų gyvavimo trukmė stipriai apšvitintame Si. Apžvelgta dabartinė būklė ir perspektyva sukurti spinduliuotei atsparius GaN detektorius.


References / Nuorodos


[1] M. Moll, Development of radiation hard sensors for very high luminosity colliders – CERN-RD50 project, Nucl. Instrum. Methods A 511, 97–105 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01772-8
[2] M. Bruzzi, Material engineering for the development of ultra-radiation hard semiconductor detectors, Nucl. Instrum. Methods A 518, 336–337 (2004),
http://dx.doi.org/10.1016/j.nima.2003.11.013
[3] T.O. Niinikoski et al. (CERN RD39 Collaboration), Low-temperature tracking detectors, Nucl. Instrum. Methods A 520, 87–92 (2004),
http://dx.doi.org/10.1016/j.nima.2003.11.228
[4] W. Adam et al., The development of diamond tracking detectors for the LHC, Nucl. Instrum. Methods A 514, 79–86 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.086
[5] M. Moll et al. (CERN RD50 Collaboration), Development of radiation tolerant semiconductor detectors for the Super-LHC, Nucl. Instrum. Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[6] D. Albertz et al., Development of GaAs Detectors for Physics at the LHC, in: Experiments at CERN (1997), pp. 379–380
[7] D. Albertz et al., Development of GaAs Detectors for Physics at the LHC, in: Experiments at CERN (1998), pp. 299–300
[8] J. Vaitkus, R. Baubinas, E. Gaubas, K. Jarašiūnas, R. Jašinskaitė, V. Kažukauskas, E. Kuprusevičius, J. Matukas, V. Palenskis, J. Storasta, M. Sūdžius, and R. Tomašiūnas, GaAs peculiarities related with inhomogeneities and the methods for reveal of their properties, Nucl. Instrum. Methods A 466, 39–46 (2001),
http://dx.doi.org/10.1016/S0168-9002(01)00822-1
[9] E. Gaubas, J. Vaitkus, G. Niaura, J. Härkönen, E. Tuovinen, P. Luukka, and E. Fretwurst, Characterization of carrier recombination and trapping processes in proton irradiated silicon by microwave absorption transients, Nucl. Instrum. Methods A 546, 108–112 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.106
[10] J. Vaitkus, Methods for defect recognition by investigation of photoelectrical and non-linear optical properties in semiconductors, in: Proceedings of 2002 ROC – Lithuania Bilateral Conference on Optoelectronics and Magnetic Materials (National Taiwan University & Academia Sinica, 2002), pp. 1–3
[11] J. Požela, K. Požela, A. Šilėnas, V. Jucienė, L. Dapkus, V. Jasutis, G. Tamulaitis, A. Žukauskas, and R.-A. Bendorius, The AlGaAs light emitting particle detector, Nucl. Instrum. Methods A 434, 169–172 (1999),
http://dx.doi.org/10.1016/S0168-9002(99)00458-1
[12] J. Vaitkus, W. Cunningham, E. Gaubas, M. Rahman, S. Sakai, K.M. Smith, and T. Wang, Semi-insulating GaN and its evaluation for alpha particle detection, Nucl. Instrum. Methods A 509, 60–64 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01550-X
[13] J.V. Vaitkus, W. Cunningham, M. Rahman, K.M. Smith, and S. Sakai, Semi-insulating GaN and its first tests for radiation hardness as ionizing radiation detector, in: UV Solid-State Light Emitters and Detectors, Proceedings of the NATO Advanced Research Workshop, held in Vilnius, 17-21 June, 2003, eds. M.S. Shur and A. Žukauskas, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 144 (Kluwer Academic Publishers, Dordrecht, 2004), pp. 279–286,
http://dx.doi.org/10.1007/978-1-4020-2103-9_24
[14] E. Gaubas, K. Kazlauskas, R. Tomašiūnas, J. Vaitkus, and A. Žukauskas, Radiation-defect-dependent photoconductivity transients and photoluminescence in semi-insulating GaN, Appl. Phys. Lett. 84(25), 5258–5260 (2004),
http://dx.doi.org/10.1063/1.1764939
[15] J. Vaitkus, E. Gaubas, V. Kazukauskas, A. Blue, W. Cunningham, M. Rahman, K. Smith, and S. Sakai, A new radiation hard semiconductor-semi-insulating GaN: Photoelectric properties, in: Physics of Semiconductors: 27th International Conference on the Physics of Semiconductors, eds. J. Menéndez, C.G. Van de Walle, AIP Conf. Proc. 772, 207–208 (2005),
http://dx.doi.org/10.1063/1.1994066
[16] T. Wang, T. Shirahama, H.B. Sun, H.X. Wang, J. Bai, S. Sakai, and H. Misawa, Influence of buffer layer and growth temperature on the properties of an undoped GaN layer grown on sapphire substrate by metalorganic chemical vapor deposition, Appl. Phys. Lett. 76(16), 2220–2222 (2000),
http://dx.doi.org/10.1063/1.126302
[17] D.V. Lang, Deep level transient spectroscopy: A new method to characterize defects in semiconductors, J. Appl. Phys. 45, 3023 (1974),
http://dx.doi.org/10.1063/1.1663719
[18] J. Vaitkus and J. Viščakas, Kinetics of nonequilibrium carrier density under weak excitation in case of two types of local levels, Soviet Physics – Collection 12(3), 421–443 (1972) [in Russian]
[19] E. Gaubas, Modifications of the technique for carrier lifetime measurement in layered structures, Lithuanian J. Phys. 40, 88–93 (2000)
[20] K. Jarašiūnas and J. Vaitkus, Investigation of nonequilibrium processes in semiconductors by the method of transient holograms, Phys. Status Solidi A 44, 793–800 (1977),
http://dx.doi.org/10.1002/pssa.2210440250
[21] G.G. Macfarlane, T.P. McLean, J.E. Quarrington, and V. Roberts, Exciton and phonon effects in the absorption spectra of germanium and silicon, J. Phys. Chem. Solids 8, 388–392 (1959),
http://dx.doi.org/10.1016/0022-3697(59)90372-5