[PDF]
http://dx.doi.org/10.3952/lithjphys.45603
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 457–461 (2005)
AN ANALYTICAL TREATMENT OF THE
DELAYED FEEDBACK CONTROL ALGORITHM AT A SUBCRITICAL HOPF
BIFURCATION
Vikt. Pyragas and K. Pyragas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt
Received 21 October 2005
We develop an analytical approach for the
delayed feedback control algorithm applied to a dynamical system
close to a subcritical Hopf bifurcation. A simple nonlinear
electronic circuit is considered as a prototypical model of the
subcritical Hopf bifurcation. The periodic orbit arising at this
bifurcation is torsion free and cannot be controlled by the
conventional delayed feedback algorithm. We show the necessity of
employing an unstable degree of freedom in a feedback loop as well
as a nonlinear coupling between the controlled system and
controller. Close to the bifurcation point the system is weakly
nonlinear and the problem is treated analytically using the method
of averaging.
Keywords: chaos, dynamical systems, delayed feedback,
subcritical Hopf bifurcation, analytical theory
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks
ANALIZINIS VALDYMO ALGORITMO
VĖLUOJANČIU GRĮŽTAMUOJU RYŠIU TYRIMAS ARTI SUBKRITINĖS HOPFO
BIFURKACIJOS
Vikt. Pyragas, K. Pyragas
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Nagrinėjame vėluojančio grįžtamojo ryšio metodo
taikymą nestabiliai periodinei orbitai, atsirandančiai dinaminėje
sistemoje arti subkritinės Hopfo bifurkacijos. Bifurkacijos taško
aplinkoje sistema yra silpnai netiesinė ir uždavinys sprendžiamas
analiziškai, naudojant suvidurkinimo metodą. Aptariame būtinybę
įjungti papildomąjį nestabilųjį laisvės laipsnį į grįžtamojo ryšio
grandinę bei panaudoti netiesinį ryšį tarp valdomos sistemos ir
valdiklio. Analiziniam tyrimo būdui pademonstruoti buvo
išnagrinėta paprasta netiesinė elektroninė grandinė, kuri
modeliuoja subkritinę Hopfo bifurkaciją. Išplėtota analizinė
teorija tinka bet kuriai dinaminei sistemai, kai ji yra arti
subkritinės Hopfo bifurkacijos.
References / Nuorodos
[1] K. Pyragas, Continuous control of chaos by self-controlling
feedback, Phys. Lett. A 170, 421–428 (1992),
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[2] K. Pyragas and A. Tamaševičius, Experimental control of chaos by
delayed self-controlling feedback, Phys. Lett. A 180, 99–102
(1993),
http://dx.doi.org/10.1016/0375-9601(93)90501-P
[3] A. Kittel, J. Parisi, K. Pyragas, and R. Richter, Delayed
feedback control of chaos in an electronic double-scroll oscillator,
Z. Naturforsch. 49a 843–846 (1994),
http://dx.doi.org/10.1515/zna-1994-0904
[4] D.J. Gauthier, D.W. Sukow, H.M. Concannon, and J.E.S. Socolar,
Stabilizing unstable periodic orbits in a fast diode resonator using
continuous time-delay autosynchronization, Phys. Rev. E 50,
2343–2346 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.2343
[5] P. Celka, Experimental verification of Pyragas's chaos control
method applied to Chua's circuit, Int. J. Bifurcation Chaos Appl.
Sci. Eng. 4, 1703–1706 (1994),
http://dx.doi.org/10.1142/S0218127494001313
[6] T. Hikihara and T. Kawagoshi, An experimental study on
stabilization of unstable periodic motion in magneto-elastic chaos,
Phys. Lett. A 211, 29–36 (1996),
http://dx.doi.org/10.1016/0375-9601(95)00925-6
[7] D.J. Christini, V. In, M.L. Spano, W.L. Ditto, and J.J. Collins,
Real-time experimental control of a system in its chaotic and
nonchaotic regimes, Phys. Rev. E 56, R3749–R3752 (1997),
http://dx.doi.org/10.1103/PhysRevE.56.R3749
[8] S. Bielawski, D. Derozier, and P. Glorieux, Controlling unstable
periodic orbits by a delayed continuous feedback, Phys. Rev. E 49,
R971–R974 (1994),
http://dx.doi.org/10.1103/PhysRevE.49.R971
[9] M. Basso, R. Genesio, and A. Tesi, Controller design for
extending periodic dynamics of a chaotic CO2 laser, Systems Control
Lett. 31, 287–297 (1997),
http://dx.doi.org/10.1016/S0167-6911(97)00044-3
[10] W. Lu, D. Yu, and R.G. Harrison, Instabilities and tracking of
travelling wave patterns in a three-level laser, Int. J. Bifurcation
Chaos Appl. Sci. Eng. 8, 1769–1775 (1998),
http://dx.doi.org/10.1142/S0218127498001479
[11] T. Pierre, G. Bonhomme, and A. Atipo, Controlling the chaotic
regime of nonlinear ionization waves using the time-delay
autosinchronization method, Phys. Rev. Lett. 76, 2290–2293
(1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2290
[12] E. Gravier, X. Caron, G. Bonhomme, T. Pierre, and J.L.
Briancon, Dynamical study and control of drift waves in a magnetized
laboratory plasma, Eur. J. Phys. D 8, 451–456 (2000),
http://dx.doi.org/10.1007/s100530050055
[13] Th. Mausbach, Th. Klinger, A. Piel, A. Atipo, Th. Pierre, and
G. Bonhomme, Continuous control of ionization wave chaos by
spatially derived feedback signals, Phys. Lett. A 228,
373–377 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00151-5
[14] T. Fukuyama, H. Shirahama, and Y. Kawai, Dynamical control of
the chaotic state of the current-driven ion acoustic instability in
a laboratory plasma using delayed feedback, Phys. Plasmas 9,
4525–4529 (2002),
http://dx.doi.org/10.1063/1.1513469
[15] O. Lüthje, S. Wolff, and G. Pfister, Control of chaotic
Taylor–Couette flow with time-delayed feedback, Phys. Rev. Lett. 86,
1745–1748 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.1745
[16] P. Parmananda, R Madrigal, M. Rivera, L. Nyikos, I.Z. Kiss, and
V. Gaspar, Stabilization of unstable steady states and periodic
orbits in an electrochemical system using delayed-feedback control,
Phys. Rev. E 59, 5266–5271 (1999),
http://dx.doi.org/10.1103/PhysRevE.59.5266
[17] A. Guderian, A.F. Münster, M. Kraus, and F.W. Schneider,
Electrochemical chaos control in a chemical reaction: Experiment and
simulation, J. Phys. Chem. A 102, 5059–5064 (1998),
http://dx.doi.org/10.1021/jp980997g
[18] H. Benner and W. Just, Control of chaos by time-delayed
feedback in high-power ferromagnetic resonance experiments, J.
Korean Phys. Soc. 40, 1046–1050 (2002)
[19] J.M. Krodkiewski and J.S. Faragher, Stabilization of motion of
helicopter rotor blades using delayed feedback – Modelling, computer
simulation and experimental verification, J. Sound Vib. 234,
591–610 (2000),
http://dx.doi.org/10.1006/jsvi.1999.2878
[20] K. Hall, D.J. Christini, M. Tremblay, J.J. Collins, L. Glass,
and J. Billette, Dynamic control of cardiac alternans, Phys. Rev.
Lett. 78, 4518–4521 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.4518
[21] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner,
Mechanism of time-delayed feedback control, Phys. Rev. Lett. 78,
203–206 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.203
[22] H. Nakajima, On analytical properties of delayed feedback
control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00362-9
[23] K. Pyragas, V. Pyragas, I.Z. Kiss, and J.L. Hudson, Stabilizing
and tracking unknown steady states of dynamical systems, Phys. Rev.
Lett. 89, 244103 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.244103
[24] K. Pyragas, Control of chaos via an unstable delayed feedback
controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265