[PDF]    http://dx.doi.org/10.3952/lithjphys.45603

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 457–461 (2005)


AN ANALYTICAL TREATMENT OF THE DELAYED FEEDBACK CONTROL ALGORITHM AT A SUBCRITICAL HOPF BIFURCATION
Vikt. Pyragas and K. Pyragas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt

Received 21 October 2005

We develop an analytical approach for the delayed feedback control algorithm applied to a dynamical system close to a subcritical Hopf bifurcation. A simple nonlinear electronic circuit is considered as a prototypical model of the subcritical Hopf bifurcation. The periodic orbit arising at this bifurcation is torsion free and cannot be controlled by the conventional delayed feedback algorithm. We show the necessity of employing an unstable degree of freedom in a feedback loop as well as a nonlinear coupling between the controlled system and controller. Close to the bifurcation point the system is weakly nonlinear and the problem is treated analytically using the method of averaging.
Keywords: chaos, dynamical systems, delayed feedback, subcritical Hopf bifurcation, analytical theory
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks


ANALIZINIS VALDYMO ALGORITMO VĖLUOJANČIU GRĮŽTAMUOJU RYŠIU TYRIMAS ARTI SUBKRITINĖS HOPFO BIFURKACIJOS
Vikt. Pyragas, K. Pyragas
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Nagrinėjame vėluojančio grįžtamojo ryšio metodo taikymą nestabiliai periodinei orbitai, atsirandančiai dinaminėje sistemoje arti subkritinės Hopfo bifurkacijos. Bifurkacijos taško aplinkoje sistema yra silpnai netiesinė ir uždavinys sprendžiamas analiziškai, naudojant suvidurkinimo metodą. Aptariame būtinybę įjungti papildomąjį nestabilųjį laisvės laipsnį į grįžtamojo ryšio grandinę bei panaudoti netiesinį ryšį tarp valdomos sistemos ir valdiklio. Analiziniam tyrimo būdui pademonstruoti buvo išnagrinėta paprasta netiesinė elektroninė grandinė, kuri modeliuoja subkritinę Hopfo bifurkaciją. Išplėtota analizinė teorija tinka bet kuriai dinaminei sistemai, kai ji yra arti subkritinės Hopfo bifurkacijos.


References / Nuorodos


[1] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170, 421–428 (1992),
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[2] K. Pyragas and A. Tamaševičius, Experimental control of chaos by delayed self-controlling feedback, Phys. Lett. A 180, 99–102 (1993),
http://dx.doi.org/10.1016/0375-9601(93)90501-P
[3] A. Kittel, J. Parisi, K. Pyragas, and R. Richter, Delayed feedback control of chaos in an electronic double-scroll oscillator, Z. Naturforsch. 49a 843–846 (1994),
http://dx.doi.org/10.1515/zna-1994-0904
[4] D.J. Gauthier, D.W. Sukow, H.M. Concannon, and J.E.S. Socolar, Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization, Phys. Rev. E 50, 2343–2346 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.2343
[5] P. Celka, Experimental verification of Pyragas's chaos control method applied to Chua's circuit, Int. J. Bifurcation Chaos Appl. Sci. Eng. 4, 1703–1706 (1994),
http://dx.doi.org/10.1142/S0218127494001313
[6] T. Hikihara and T. Kawagoshi, An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos, Phys. Lett. A 211, 29–36 (1996),
http://dx.doi.org/10.1016/0375-9601(95)00925-6
[7] D.J. Christini, V. In, M.L. Spano, W.L. Ditto, and J.J. Collins, Real-time experimental control of a system in its chaotic and nonchaotic regimes, Phys. Rev. E 56, R3749–R3752 (1997),
http://dx.doi.org/10.1103/PhysRevE.56.R3749
[8] S. Bielawski, D. Derozier, and P. Glorieux, Controlling unstable periodic orbits by a delayed continuous feedback, Phys. Rev. E 49, R971–R974 (1994),
http://dx.doi.org/10.1103/PhysRevE.49.R971
[9] M. Basso, R. Genesio, and A. Tesi, Controller design for extending periodic dynamics of a chaotic CO2 laser, Systems Control Lett. 31, 287–297 (1997),
http://dx.doi.org/10.1016/S0167-6911(97)00044-3
[10] W. Lu, D. Yu, and R.G. Harrison, Instabilities and tracking of travelling wave patterns in a three-level laser, Int. J. Bifurcation Chaos Appl. Sci. Eng. 8, 1769–1775 (1998),
http://dx.doi.org/10.1142/S0218127498001479
[11] T. Pierre, G. Bonhomme, and A. Atipo, Controlling the chaotic regime of nonlinear ionization waves using the time-delay autosinchronization method, Phys. Rev. Lett. 76, 2290–2293 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2290
[12] E. Gravier, X. Caron, G. Bonhomme, T. Pierre, and J.L. Briancon, Dynamical study and control of drift waves in a magnetized laboratory plasma, Eur. J. Phys. D 8, 451–456 (2000),
http://dx.doi.org/10.1007/s100530050055
[13] Th. Mausbach, Th. Klinger, A. Piel, A. Atipo, Th. Pierre, and G. Bonhomme, Continuous control of ionization wave chaos by spatially derived feedback signals, Phys. Lett. A 228, 373–377 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00151-5
[14] T. Fukuyama, H. Shirahama, and Y. Kawai, Dynamical control of the chaotic state of the current-driven ion acoustic instability in a laboratory plasma using delayed feedback, Phys. Plasmas 9, 4525–4529 (2002),
http://dx.doi.org/10.1063/1.1513469
[15] O. Lüthje, S. Wolff, and G. Pfister, Control of chaotic Taylor–Couette flow with time-delayed feedback, Phys. Rev. Lett. 86, 1745–1748 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.1745
[16] P. Parmananda, R Madrigal, M. Rivera, L. Nyikos, I.Z. Kiss, and V. Gaspar, Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control, Phys. Rev. E 59, 5266–5271 (1999),
http://dx.doi.org/10.1103/PhysRevE.59.5266
[17] A. Guderian, A.F. Münster, M. Kraus, and F.W. Schneider, Electrochemical chaos control in a chemical reaction: Experiment and simulation, J. Phys. Chem. A 102, 5059–5064 (1998),
http://dx.doi.org/10.1021/jp980997g
[18] H. Benner and W. Just, Control of chaos by time-delayed feedback in high-power ferromagnetic resonance experiments, J. Korean Phys. Soc. 40, 1046–1050 (2002)
[19] J.M. Krodkiewski and J.S. Faragher, Stabilization of motion of helicopter rotor blades using delayed feedback – Modelling, computer simulation and experimental verification, J. Sound Vib. 234, 591–610 (2000),
http://dx.doi.org/10.1006/jsvi.1999.2878
[20] K. Hall, D.J. Christini, M. Tremblay, J.J. Collins, L. Glass, and J. Billette, Dynamic control of cardiac alternans, Phys. Rev. Lett. 78, 4518–4521 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.4518
[21] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner, Mechanism of time-delayed feedback control, Phys. Rev. Lett. 78, 203–206 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.203
[22] H. Nakajima, On analytical properties of delayed feedback control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00362-9
[23] K. Pyragas, V. Pyragas, I.Z. Kiss, and J.L. Hudson, Stabilizing and tracking unknown steady states of dynamical systems, Phys. Rev. Lett. 89, 244103 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.244103
[24] K. Pyragas, Control of chaos via an unstable delayed feedback controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265