[PDF]
http://dx.doi.org/10.3952/lithjphys.45604
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 487–495 (2005)
EFFECT OF HIGH-ENERGY PROTONS ON
4H-SiC RADIATION DETECTORS
V. Kažukauskasa, R. Jasiulionisb, V.
Kalendraa, and J.-V. Vaitkusa
aSemiconductor Physics Department and Institute of
Materials Science and Applied Research, Vilnius University,
Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vaidotas.kazukauskas@ff.vu.lt
b Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
Received 30 June 2005
We present investigation of high energy
radiation detectors based on 4H-SiC as influenced by irradiation
with 24 GeV proton doses of up to 1016 cm−2.
SiC detectors have been produced from n-type 4H-SiC epilayers
grown on the top of the n+-type substrate. They
were supplied with a nickel ohmic contact on the back surface and
a gold Schottky contact on the top. Activities and numbers of 7Be
and 22Na atoms produced in SiC detectors after the
irradiation were measured experimentally. Activities of other
radionuclides were calculated on the basis of this data.
Activities of 7Be and 22Na were
proportional to the total irradiation dose and ranged from 1.3 to
890 Bq and from 1.9 to 950 Bq, respectively. In the samples
irradiated with 1 · 1013 and 1 · 1016
protons/cm2 390 days after the irradiation the number
of radiated electrons with different energies was from 1.0 to 600
per second, respectively. Contact properties of the devices were
investigated by means of the current–voltage (I–V)
characteristics. It was found that proton irradiation with the
highest doses leads to the significant changes of the contact
properties. Namely, the contact potential barrier grows from about
0.7–0.75 eV in the pristine and less irradiated samples up to
about 0.84 eV in the detectors irradiated by highest doses.
Moreover, rectifying behaviour of the Schottky contacts becomes
much less expressed upon irradiation, tending to become nearly
symmetrical. The observed behaviour probably can be explained by
the appearance of the irradiation-induced inhomogeneous regions of
detectors that limits the applicability of classical contact
theory.
Keywords: 4H-SiC, high-energy radiation detectors, proton
irradiation, radionuclides
PACS: 61.80.-x, 72.80.Jc, 85.30.De
DIDELĖS ENERGIJOS PROTONŲ
POVEIKIS 4H-SiC JONIZUOJANČIOSIOS SPINDULIUOTĖS DETEKTORIAMS
V. Kažukauskasa, R. Jasiulionisb, V.
Kalendraa, J.-V. Vaitkusa
aVilniaus universitetas, Vilnius, Lietuva
bFizikos institutas, Vilnius, Lietuva
Tirta apšvitos didelės energijos protonais
įtaka 4H-SiC jonizuojančiosios spinduliuotės detektorių savybėms.
Šotkio (Schottky) detektoriai buvo pagaminti, naudojant n laidumo
tipo 4H-SiC epitaksinius sluoksnius, užaugintus ant n+
tos pačios medžiagos padėklų. Šotkio kontaktas buvo suformuotas,
darinio viršuje užgarinant aukso elektrodą, o apačioje buvo
užgarintas ominis nikelio elektrodas. Detektorių elektrinės
savybės buvo tiriamos, matuojant jų voltamperines priklausomybes.
Naudojant žemo fono gama spektrometrą, pastebėtas protonų
branduolinėse reakcijose su Si ir C branduoliais susidariusių 7Be
ir 22Na spinduliavimas. Įvertinti tų ir kitų
radionuklidų bei jų skilimo produktų kiekiai detektoriuose.
Parodyta, jog apšvita didelės energijos protonais esmingai keičia
detektorių savybes. Visų pirma, žymiai mažėja diodo sugebėjimas
lyginti srovę, t. y., voltamperinės priklausomybės asimetrija.
Kontakto parametrų kitimas, didėjant apšvitos dozei, vyko
dvejopai. Esant mažesnėms dozėms iki 1 · 1015
protonų/cm2, pastebėtas potencialinio barjero aukščio
sumažėjimas nuo maždaug 0,75 eV iki < 0,7 eV, lydimas
užtvarinės srovės stiprėjimo beveik viena eile. Tuo tarpu apšvitos
dozei viršijus 3 · 1015 protonų/cm2,
parametrų pokytis yra priešingas ir žymiai labiau išreikštas.
Apšvitos dozei pasiekus 1 · 1016 protonų/cm2,
potencialinio barjero aukštis padidėjo iki ∼ 0, 85 eV, o užtvarinė
srovė atitinkamai sumažėjo maždaug dviem eilėmis. Pastebėti
efektai aiškinami medžiagos kristalinės sandaros suardymu,
apšaudant ją didelės energijos dalelėms, ir skirtingo aukščio bei
orientacijos potencialinių barjerų susidarymu visame detektorių
tūryje.
References / Nuorodos
[1] Yu.A. Goldberg, M. Levinshtein, and S.L. Rumyantsev, Properties
of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe,
Chapter 5: Silicon Carbide (Wiley, New York, 2001) pp. 93–147
[2] A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, P.G. Fuochi,
and P. Vanni, "Recovery" effect of electron induced damage in 4H-SiC
Schottky diodes, MRS Proc. 792, 611–616 (2004),
http://dx.doi.org/10.1557/PROC-792-R10.6
[3] A. Castaldini, A. Cavallini, L. Rigutti, and F. Nava, Low
temperature annealing of electron irradiation induced defects in
4H-SiC, Appl. Phys. Lett. 85(17), 3780–3782 (2004),
http://dx.doi.org/10.1063/1.1810627
[4] Z-Q. Fang, D.C. Look, A. Saxler, and W.C. Mitchel,
Characterization of deep centers in bulk n-type 4H-SiC,
Physica B 308–310, 706–709 (2001),
http://dx.doi.org/10.1016/S0921-4526(01)00876-6
[5] D.V. Davydov, A.A. Lebedev, V.V. Kozlovski, N.S. Savkina, and
A.M. Strel'chuk, DLTS study of defects in 6H- and 4H-SiC created by
proton irradiation, Physica B 308–310, 641–644 (2002),
http://dx.doi.org/10.1016/S0921-4526(01)00775-X
[6] S. Maximenko, S. Soloviev, D. Cherednichenko, and T. Sudarshan,
Electron-beam-induced current observed for dislocations in diffused
4H-SiC P–N diodes, Appl. Phys. Lett. 84(9), 1576–1578
(2004),
http://dx.doi.org/10.1063/1.1652229
[7] M. Tajima, M. Tanaka, and N. Hoshino, Characterization of SiC
epitaxial wafers by photoluminescence under deep UV excitation,
Mater. Sci. Forum 389–393(1), 597–600 (2002),
http://dx.doi.org/10.4028/www.scientific.net/MSF.389-393.597
[8] N.E. Korsunska, I. Tarasov, V. Kushnirenko, and S. Ostapenko,
High-temperature photoluminescence spectroscopy in p-type
SiC, Semicond. Sci. Technol. 19(7), 833–838 (2004),
http://dx.doi.org/10.1088/0268-1242/19/7/009
[9] R. Weingärtner, P.J. Wellmann, M. Bickermann, D. Hofmann, T.L.
Straubinger, and A. Winnacker, Determination of charge carrier
concentration in n- and p-doped SiC based on optical
absorption measurements, Appl. Phys. Lett. 80(1), 70–72
(2002),
http://dx.doi.org/10.1063/1.1430262
[10] R. Stibal, S. Müller, W. Jantz, G. Pozina, B. Magnusson, and A.
Ellison, Nondestructive topographic resistivity evaluation of
semiinsulating SiC substrates, Phys. Status Solidi C 0(3),
1013–1018 (2003),
http://dx.doi.org/10.1002/pssc.200306237
[11] M. Mermoux, A. Crisci, and F. Baillet, Raman imaging analysis
of SiC wafers, Mater. Sci. Forum 433–436, 353–356 (2003),
http://dx.doi.org/10.4028/www.scientific.net/MSF.433-436.353
[12] S. Ostapenko, Yu.M. Suleimanov, I. Tarasov, S. Lulu, and S.E.
Saddow, Thermally stimulated luminescence in full-size 4H-SiC
wafers, J. Phys. Cond. Matter 14(48), 13381–13386 (2002),
http://dx.doi.org/10.1088/0953-8984/14/48/392
[13] Q. Li, A.Y. Polyakov, M. Skowronski, M.D. Roth, M.A. Fanton,
and D.W. Snyder, Electrical nonuniformities and their impact on the
electron mobility in semi-insulating SiC crystals, J. Appl. Phys. 96(1),
411–414 (2004),
http://dx.doi.org/10.1063/1.1739290
[14] D.M. Martin, H. Kortegaard Nielsen, P. Leveque, A. Hallen, G.
Alfieri, and B.G. Svensson, Bistable defect in mega-electron-volt
proton implanted 4H silicon carbide, Appl. Phys. Lett. 84(10),
1704–1706 (2004),
http://dx.doi.org/10.1063/1.1651656
[15] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami,
Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC
(0001), J. Appl. Phys. 96(1), 224–227 (2004),
http://dx.doi.org/10.1063/1.1756213
[16] L. Wang, J. Huang, X. Duo, Z. Song, Ch. Lin, C.-M. Zetterling,
and M. Östling, Investigation of damage behaviour and isolation
effect of n-type 6H-SiC by implantation of oxygen, J. Phys.
D 33(12), 1551–1555 (2000),
http://dx.doi.org/10.1088/0022-3727/33/12/317
[17] W. Cunningham, A. Gouldwell, G. Lamb, P. Roy, J. Scott, K.
Mathieson, R. Bates, K.M. Smith, R. Cusco, I.M. Watson, M. Glaser,
and M. Rahman, Probing bulk and surface damage in widegap
semiconductors, J. Phys. D 34(18), 2748–2753 (2001),
http://dx.doi.org/10.1088/0022-3727/34/18/306
[18] F. Nava, E. Vittone, P. Vanni, P.G. Fuochi, and C. Lanzieri,
Radiation tolerance of epitaxial silicon carbide detectors for
electrons and γ-rays, Nucl. Instrum. Methods A 514(1–3),
126–134 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.094
[19] W. Cunningham, J. Melone, M. Horn, V. Kažukauskas, P. Roy, F.
Doherty, M. Glaser, J. Vaitkus, and M. Rahman, Performance of
irradiated bulk SiC detectors, Nucl. Instrum. Methods A 509(1),
127–131 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01560-2
[20] R. Jasiulionis and H. Wershofen, A study of the vertical
diffusion of the cosmogenic radionuclides, 7Be and 22Na
in the atmosphere, J. Environmental Radioactivity 79(2),
157–169 (2005),
http://dx.doi.org/10.1016/j.jenvrad.2004.06.003
[21] R. Silberger and C.H. Tsao, Partial cross-section in
high-energy nuclear reactions and astrophysical applications,
Astrophys. J. Suppl. Ser. 25(220), 315–333 (1973),
http://dx.doi.org/10.1086/190271
[22] L. Silver, C.H. Tsao, R. Silberger, T. Kanai, and A.F.
Barghouty, Total reaction and partial cross section calculations in
proton–nucleus (Zt ≤ 26) and nucleus–nucleus
reactions (Zp and Zt ≤ 26),
Phys. Rev. C 47(3), 1225–1236 (1993),
http://dx.doi.org/10.1103/PhysRevC.47.1225