[PDF]    http://dx.doi.org/10.3952/lithjphys.45604

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 487–495 (2005)


EFFECT OF HIGH-ENERGY PROTONS ON 4H-SiC RADIATION DETECTORS
V. Kažukauskasa, R. Jasiulionisb, V. Kalendraa, and J.-V. Vaitkusa
aSemiconductor Physics Department and Institute of Materials Science and Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vaidotas.kazukauskas@ff.vu.lt
b Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania


Received 30 June 2005

We present investigation of high energy radiation detectors based on 4H-SiC as influenced by irradiation with 24 GeV proton doses of up to 1016 cm−2. SiC detectors have been produced from n-type 4H-SiC epilayers grown on the top of the n+-type substrate. They were supplied with a nickel ohmic contact on the back surface and a gold Schottky contact on the top. Activities and numbers of 7Be and 22Na atoms produced in SiC detectors after the irradiation were measured experimentally. Activities of other radionuclides were calculated on the basis of this data. Activities of 7Be and 22Na were proportional to the total irradiation dose and ranged from 1.3 to 890 Bq and from 1.9 to 950 Bq, respectively. In the samples irradiated with 1 · 1013 and 1 · 1016 protons/cm2 390 days after the irradiation the number of radiated electrons with different energies was from 1.0 to 600 per second, respectively. Contact properties of the devices were investigated by means of the current–voltage (IV) characteristics. It was found that proton irradiation with the highest doses leads to the significant changes of the contact properties. Namely, the contact potential barrier grows from about 0.7–0.75 eV in the pristine and less irradiated samples up to about 0.84 eV in the detectors irradiated by highest doses. Moreover, rectifying behaviour of the Schottky contacts becomes much less expressed upon irradiation, tending to become nearly symmetrical. The observed behaviour probably can be explained by the appearance of the irradiation-induced inhomogeneous regions of detectors that limits the applicability of classical contact theory.
Keywords: 4H-SiC, high-energy radiation detectors, proton irradiation, radionuclides
PACS: 61.80.-x, 72.80.Jc, 85.30.De


DIDELĖS ENERGIJOS PROTONŲ POVEIKIS 4H-SiC JONIZUOJANČIOSIOS SPINDULIUOTĖS DETEKTORIAMS
V. Kažukauskasa, R. Jasiulionisb, V. Kalendraa, J.-V. Vaitkusa
aVilniaus universitetas, Vilnius, Lietuva
bFizikos institutas, Vilnius, Lietuva

Tirta apšvitos didelės energijos protonais įtaka 4H-SiC jonizuojančiosios spinduliuotės detektorių savybėms. Šotkio (Schottky) detektoriai buvo pagaminti, naudojant n laidumo tipo 4H-SiC epitaksinius sluoksnius, užaugintus ant n+ tos pačios medžiagos padėklų. Šotkio kontaktas buvo suformuotas, darinio viršuje užgarinant aukso elektrodą, o apačioje buvo užgarintas ominis nikelio elektrodas. Detektorių elektrinės savybės buvo tiriamos, matuojant jų voltamperines priklausomybes. Naudojant žemo fono gama spektrometrą, pastebėtas protonų branduolinėse reakcijose su Si ir C branduoliais susidariusių 7Be ir 22Na spinduliavimas. Įvertinti tų ir kitų radionuklidų bei jų skilimo produktų kiekiai detektoriuose.
Parodyta, jog apšvita didelės energijos protonais esmingai keičia detektorių savybes. Visų pirma, žymiai mažėja diodo sugebėjimas lyginti srovę, t. y., voltamperinės priklausomybės asimetrija. Kontakto parametrų kitimas, didėjant apšvitos dozei, vyko dvejopai. Esant mažesnėms dozėms iki 1 · 1015 protonų/cm2, pastebėtas potencialinio barjero aukščio sumažėjimas nuo maždaug 0,75 eV iki < 0,7 eV, lydimas užtvarinės srovės stiprėjimo beveik viena eile. Tuo tarpu apšvitos dozei viršijus 3 · 1015 protonų/cm2, parametrų pokytis yra priešingas ir žymiai labiau išreikštas. Apšvitos dozei pasiekus 1 · 1016 protonų/cm2, potencialinio barjero aukštis padidėjo iki ∼ 0, 85 eV, o užtvarinė srovė atitinkamai sumažėjo maždaug dviem eilėmis. Pastebėti efektai aiškinami medžiagos kristalinės sandaros suardymu, apšaudant ją didelės energijos dalelėms, ir skirtingo aukščio bei orientacijos potencialinių barjerų susidarymu visame detektorių tūryje.


References / Nuorodos


[1] Yu.A. Goldberg, M. Levinshtein, and S.L. Rumyantsev, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, Chapter 5: Silicon Carbide (Wiley, New York, 2001) pp. 93–147
[2] A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, P.G. Fuochi, and P. Vanni, "Recovery" effect of electron induced damage in 4H-SiC Schottky diodes, MRS Proc. 792, 611–616 (2004),
http://dx.doi.org/10.1557/PROC-792-R10.6
[3] A. Castaldini, A. Cavallini, L. Rigutti, and F. Nava, Low temperature annealing of electron irradiation induced defects in 4H-SiC, Appl. Phys. Lett. 85(17), 3780–3782 (2004),
http://dx.doi.org/10.1063/1.1810627
[4] Z-Q. Fang, D.C. Look, A. Saxler, and W.C. Mitchel, Characterization of deep centers in bulk n-type 4H-SiC, Physica B 308–310, 706–709 (2001),
http://dx.doi.org/10.1016/S0921-4526(01)00876-6
[5] D.V. Davydov, A.A. Lebedev, V.V. Kozlovski, N.S. Savkina, and A.M. Strel'chuk, DLTS study of defects in 6H- and 4H-SiC created by proton irradiation, Physica B 308–310, 641–644 (2002),
http://dx.doi.org/10.1016/S0921-4526(01)00775-X
[6] S. Maximenko, S. Soloviev, D. Cherednichenko, and T. Sudarshan, Electron-beam-induced current observed for dislocations in diffused 4H-SiC P–N diodes, Appl. Phys. Lett. 84(9), 1576–1578 (2004),
http://dx.doi.org/10.1063/1.1652229
[7] M. Tajima, M. Tanaka, and N. Hoshino, Characterization of SiC epitaxial wafers by photoluminescence under deep UV excitation, Mater. Sci. Forum 389–393(1), 597–600 (2002),
http://dx.doi.org/10.4028/www.scientific.net/MSF.389-393.597
[8] N.E. Korsunska, I. Tarasov, V. Kushnirenko, and S. Ostapenko, High-temperature photoluminescence spectroscopy in p-type SiC, Semicond. Sci. Technol. 19(7), 833–838 (2004),
http://dx.doi.org/10.1088/0268-1242/19/7/009
[9] R. Weingärtner, P.J. Wellmann, M. Bickermann, D. Hofmann, T.L. Straubinger, and A. Winnacker, Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements, Appl. Phys. Lett. 80(1), 70–72 (2002),
http://dx.doi.org/10.1063/1.1430262
[10] R. Stibal, S. Müller, W. Jantz, G. Pozina, B. Magnusson, and A. Ellison, Nondestructive topographic resistivity evaluation of semiinsulating SiC substrates, Phys. Status Solidi C 0(3), 1013–1018 (2003),
http://dx.doi.org/10.1002/pssc.200306237
[11] M. Mermoux, A. Crisci, and F. Baillet, Raman imaging analysis of SiC wafers, Mater. Sci. Forum 433–436, 353–356 (2003),
http://dx.doi.org/10.4028/www.scientific.net/MSF.433-436.353
[12] S. Ostapenko, Yu.M. Suleimanov, I. Tarasov, S. Lulu, and S.E. Saddow, Thermally stimulated luminescence in full-size 4H-SiC wafers, J. Phys. Cond. Matter 14(48), 13381–13386 (2002),
http://dx.doi.org/10.1088/0953-8984/14/48/392
[13] Q. Li, A.Y. Polyakov, M. Skowronski, M.D. Roth, M.A. Fanton, and D.W. Snyder, Electrical nonuniformities and their impact on the electron mobility in semi-insulating SiC crystals, J. Appl. Phys. 96(1), 411–414 (2004),
http://dx.doi.org/10.1063/1.1739290
[14] D.M. Martin, H. Kortegaard Nielsen, P. Leveque, A. Hallen, G. Alfieri, and B.G. Svensson, Bistable defect in mega-electron-volt proton implanted 4H silicon carbide, Appl. Phys. Lett. 84(10), 1704–1706 (2004),
http://dx.doi.org/10.1063/1.1651656
[15] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC (0001), J. Appl. Phys. 96(1), 224–227 (2004),
http://dx.doi.org/10.1063/1.1756213
[16] L. Wang, J. Huang, X. Duo, Z. Song, Ch. Lin, C.-M. Zetterling, and M. Östling, Investigation of damage behaviour and isolation effect of n-type 6H-SiC by implantation of oxygen, J. Phys. D 33(12), 1551–1555 (2000),
http://dx.doi.org/10.1088/0022-3727/33/12/317
[17] W. Cunningham, A. Gouldwell, G. Lamb, P. Roy, J. Scott, K. Mathieson, R. Bates, K.M. Smith, R. Cusco, I.M. Watson, M. Glaser, and M. Rahman, Probing bulk and surface damage in widegap semiconductors, J. Phys. D 34(18), 2748–2753 (2001),
http://dx.doi.org/10.1088/0022-3727/34/18/306
[18] F. Nava, E. Vittone, P. Vanni, P.G. Fuochi, and C. Lanzieri, Radiation tolerance of epitaxial silicon carbide detectors for electrons and γ-rays, Nucl. Instrum. Methods A 514(1–3), 126–134 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.094
[19] W. Cunningham, J. Melone, M. Horn, V. Kažukauskas, P. Roy, F. Doherty, M. Glaser, J. Vaitkus, and M. Rahman, Performance of irradiated bulk SiC detectors, Nucl. Instrum. Methods A 509(1), 127–131 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01560-2
[20] R. Jasiulionis and H. Wershofen, A study of the vertical diffusion of the cosmogenic radionuclides, 7Be and 22Na in the atmosphere, J. Environmental Radioactivity 79(2), 157–169 (2005),
http://dx.doi.org/10.1016/j.jenvrad.2004.06.003
[21] R. Silberger and C.H. Tsao, Partial cross-section in high-energy nuclear reactions and astrophysical applications, Astrophys. J. Suppl. Ser. 25(220), 315–333 (1973),
http://dx.doi.org/10.1086/190271
[22] L. Silver, C.H. Tsao, R. Silberger, T. Kanai, and A.F. Barghouty, Total reaction and partial cross section calculations in proton–nucleus (Zt ≤ 26) and nucleus–nucleus reactions (Zp and Zt ≤ 26), Phys. Rev. C 47(3), 1225–1236 (1993),
http://dx.doi.org/10.1103/PhysRevC.47.1225