[PDF]    http://dx.doi.org/10.3952/lithjphys.45606

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 45, 423–436 (2005)


MICROWAVE RADIATION AND X-RAY-INDUCED PHENOMENA IN SEMICONDUCTORS
S. Ašmontasa,b, A. Laurinavičiusa, J. Paukštėb, and A. Šilėnasa
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: asmontas@uj.pfi.lt
bPanevėžys Institute, Kaunas University of Technology, Klaipėdos 1, LT-35209 Panevėžys, Lithuania

Received 21 December 2005

We review experimental results on interaction of microwave and X-rays with various semiconductors that have been obtained at the Semiconductor Physics Institute starting from the pioneering works of J. Požela up to his latest achievements. Special attention is paid to the microwave technique allowing one to estimate the hot electron diffusion coefficient in semiconductors and the bigradient effect, the phenomenon which has been recognized as a discovery in 1977. The application aspects of the above research are furthered in two different approaches: in microwave range, this is done via non-destructive characterization of material homogeneity either by excitation of the helicon waves or by a local excitation of millimetre waves in the tested sample, while in X-ray range this is exposed in the application of inhomogeneous and graded-gap semiconductors to convert the X-rays into optical range thus enabling their detection by conventional CCD cameras.
Keywords: microwaves, helicons, hot carriers, semiconductor X-ray detectors
PACS: 61.82.Fk, 72.20.-i, 07.05.Pj, 78.70.-g, 29.40Wk


MIKROBANGŲ IR RENTGENO SPINDULIUOTĖS SUKELIAMI REIŠKINIAI PUSLAIDININKIUOSE
S. Ašmontasa,b, A. Laurinavičiusa, J. Paukštėb, A. Šilėnasa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bKauno technologijos universiteto Panevėžio institutas, Panevėžys, Lietuva

Pateikti mikrobangų ir Rentgeno spinduliuotės sąveikos su įvairiais puslaidininkiais eksperimentiniai tyrimai, atlikti Puslaidininkių fizikos institute, pradedant novatoriškais J. Poželos darbais ir baigiant paskutiniųjų metų rezultatais. Pagrindinis dėmesys buvo skirtas mikrobangų metodui, leidžiančiam nustatyti karštųjų elektronų difuzijos koeficientą puslaidininkiuose, ir bigradientiniam efektui, kuris 1977 metais buvo pripažintas atradimu. Taikomasis šių tyrimų pobūdis atskleidžiamas, apžvelgiant neardančius paviršiaus puslaidininkių parametrų nustatymo metodus, panaudojant helikonines bangas arba lokaliai sužadinant milimetrines bangas bandiniuose, bei Rentgeno spinduliuotės konversiją į infraraudonąją šviesą varizoniniuose AlxGa1−xAs dariniuose, įgalinančią nuskaityti Rentgeno vaizdą įprastine CCD kamera.


References / Nuorodos


[1] A. Vebra and J. Pozhela, Investigation of carrier mobility in germanium in high electric fields, Trudy Akademii Nauk Litovskoy SSR B 2(25), 99–105 (1961) [in Russian]
[2] V. Dienys and J. Požela, Hot Electrons (Mintis, Vilnius, 1971) [in Russian]
[3] T. Banys, J. Paršeliūnas, and J. Pozhela, Absolute negative resistance of gallium arsenide under the influence of strong microwave field, Fiz. Tekh. Poluprovodn. (Sov. Phys. Semicond.) 5, 1990–1992 (1971)
[4] T. Banys, J. Paršeliūnas, and J. Pozhela, High-voltage microwave emf in GaAs, Lietuvos Fizikos Rinkinys 11, 1013–1019 (1971)
[5] J. Pozhela, K. Repšas, and V. Shilalnikas, Hot current carriers in Ge and Si, in: Proceedings of International Conference on the Physics of Semiconductors, Exeter, England, 1962, pp. 149–151
[6] S. Ašmontas, Electrogradient Phenomena in Semiconductors (Mokslas, Vilnius, 1984) [in Russian]
[7] J.K. Pozhela, Plasma and Current Instabilities in Semiconductors (Pergamon Press,New York, 1981),
http://dx.doi.org/10.1016/B978-0-08-025048-9.50007-X
[8] A. Laurinavičius and J. Požela, Investigation of helicon waves from magnetoreflection in InSb samples at microwave frequencies, Lietuvos Fizikos Rinkinys 11, 65–71 (1971)
[9] J. Požela and R. Tolutis, Investigation of semiconductors by helicon waves, in: Many-valley Semiconductors (Mokslas, Vilnius, 1978), pp. 87–142
[10] L. Laurinavičius and R. Tolutis, Semiconductor alloy resonator-type HF isolators, Electron. Lett. 18, 243–244 (1982),
http://dx.doi.org/10.1049/el:19820167
[11] L. Laurinavičius and R. Tolutis, Semiconductor valve, Prib. Tekh. Eksp. (Instrum. Exp. Tech. (USSR)) 25(4), 255 (1982) [in Russian]
[12] A. Šilėnas, J. Požela, V.M. Smith, K. Požela, V. Jasutis, L. Dapkus, and V. Jucienė, Non-uniformly doped gruded-gap AlxGa1−xAs X-ray detectors with high photovoltaic response, Nucl. Instrum. Methods A 487, 54–59 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)00945-2
[13] K. Požela, J. Požela, V. Jasutis, L. Dapkus, and A. Šilėnas, New type X-ray detector with optical response, in: Proceedings of the 24th Workshop on Compound Semiconductors Devices and Integrated Circuits, Aegean Sea, Greece, May 29 – June 02, 2000, pp. XIV-17–XIV-18
[14] S. Ašmontas and L. Subačius, Hot electron diffusion coefficient in germanium, Lietuvos Fizikos Rinkinys 17, 71–78 (1977) [in Russian; English translation in: Sov. Phys. Collection 17, 43–48 (Allerton Press Inc., New York, 1977)]
[15] S. Ašmontas, J. Požela, L. Subačius, and G. Valušis, Electron gas heating and cooling effects by microwave electric fields in compensated InSb, Solid-State Electron. 31, 701–703 (1988),
http://dx.doi.org/10.1016/B978-0-08-036237-3.50092-9
[16] S. Ašmontas, S. Dedulevičius, Ž. Kancleris, L. Subačius, and G. Valušis, Investigation of hot electron relaxation in electric fields in compensated InSb<Cr>, Lietuvos Fizikos Rinkinys 32, 425–433 (1992) [in Russian; English translation in: Lithuanian J. Phys. 32, 224–228 (Allerton Press Inc., New York, 1992)]
[17] Z.S. Gribnikov and V.A. Kochelap, Cooling of current carriers scattering their energy on the optical lattice vibrations, Sov. Phys. JETP 12(3), 1046–1056 (1970)
[18] S. Ašmontas and L. Subačius, Hot electron thermoemf in compensated InSb<Cr>, Fiz. Tekh. Poluprovodn. (Sov. Phys. Semicond.) 16, 40–47 (1982)
[19] S.P. Ashmontas, Yu.K. Pozhela, and L.E. Subachyus, Heating and cooling of electron gas in electric fields in compensated indium antimonide, JETP Lett. 33(11), 564–567 (1981)
[20] V. Bareikis, R. Katilius, and R. Miliušytė, Fluctuation Phenomena in Semiconductors in Nonequilibrium State (Mokslas, Vilnius, 1989)
[21] S. Ašmontas, J. Liberis, L. Subačius, and G. Valušis, Electron gas cooling studied by measurements of noise temperature, Semicond. Sci. Technol. 7, B331–B333 (1992),
http://dx.doi.org/10.1088/0268-1242/7/3B/084
[22] S. Ašmontas, K. Požela, and K. Repšas, Investigation of IV characteristics of Ge and Si asymmetrically necked samples, Lietuvos Fizikos Rinkinys 15, 249–258 (1975)
[23] S. Ašmontas, Study of electron heating by nonuniform electric fields in n-Si, Phys. Status Solidi A 31, 409 (1975),
http://dx.doi.org/10.1002/pssa.2210310208
[24] S. Ašmontas, J. Pozhela, and K. Repšas, Phenomenon of Electromotive Force and Asymmetry of Electrical Conductivity in Uniform Isotropic Semiconductor, Diploma of discovery No. 185, Bulletin of Inventions (39), 1 (1977) [in Russian]
[25] S. Ašmontas, A. Juozapavičius, D. Seliuta, E. Širmulis, V. Tamošiūnas, G. Valušis, and K. Köhler, Inplane shaped GaAs/AlGaAs modulation-doped structures: Physics and applications for THz / subTHz sensing, in: Trends in Semiconductor Research, ed. T.B. Elliot (Nova Science Pub. Inc., New York, 2005) pp. 59–80
[26] E.D. Palik and J.K. Furdyna, Infrared and microwave magnetoplasma effects in semiconductors, Rep. Prog. Phys. 33(12), 1193–1322 (1970),
http://dx.doi.org/10.1088/0034-4885/33/3/307
[27] A. Laurinavičius and J. Požela, Contactless measurement of free charge carrier distribution in volume of the narrow gap semiconductors, Prib. Tekh. Eksp. (Instrum. Exp. Tech. (USSR)) 19(4), 241–242, (1976) [in Russian]
[28] A. Laurinavičius, J. Požela, and R. Tolutis, Helicon diagnostics of narrow gap semiconductor quality, in: Proceedings of the 10th World Conference on Non Destructive Testing 3 (Moscow, 1982), pp. 265–273
[29] A. Laurinavičius and J. Požela, Helicon diagnostics, Nauka v SSSR, No. 6, 34–38 (1987) [in Russian]
[30] A. Laurinavičius, P. Malakauskas, and J. Požela, Semiconductor non-destructive testing by helicon waves, Int. J. Infrared Millimeter Waves 8(5), 573–582 (1987),
http://dx.doi.org/10.1007/BF01013265
[31] A. Laurinavičius, T. Anbinderis, O. Martjanova, J. Prišutov, A. Abrutis, and A. Teišerskis, Nondestructive material homogeneity characterization by millimeter waves, Int. J. Infrared Millimeter Waves 22(7), 961–965 (2001),
http://dx.doi.org/10.1023/A:1014978702228
[32] K. Požela, J. Požela, and V. Jucienė, Light emitted GaAs detectors, Nucl. Instrum. Methods A 410, 111–114 (1998),
http://dx.doi.org/10.1016/S0168-9002(98)00190-9
[33] J. Požela, K. Požela, A. Šilėnas, V. Juciene, L. Dapkus, V. Jasutis, G. Tamulaitis, A. Žukauskas, and R.-A. Bendorius, The AlGaAs light emitting particle detector, Nucl. Instrum. Methods A 434, 169–172 (1999),
http://dx.doi.org/10.1016/S0168-9002(99)00458-1
[34] K. Požela, J. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, and V. Jucienė, The AlxGa1−xAs X-ray imaging detector, Nucl. Instrum. Methods A 460, 119–122 (2001),
http://dx.doi.org/10.1016/S0168-9002(00)01105-0
[35] A. Šilėnas, J. Požela, K. Požela, V. Jasutis, L. Dapkus, and V. Jucienė, Graded-gap AlxGa1−xAs X-ray detectors with fast photovoltaic response, Mater. Sci. Forum 384–385, 287–290 (2002),
http://dx.doi.org/10.4028/www.scientific.net/MSF.384-385.287
[36] J. Požela, K. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, A. Kinduris, and V. Jucienė, A graded-gap detector of ionizing radiation, Semicond. 36, 116–120 (2002),
http://dx.doi.org/10.1134/1.1434523
[37] A. Šilėnas, J. Požela, K. Požela, L. Dapkus, and V. Jucienė, High spatial resolution graded-gap AlGaAs X-ray detector, in: Abstracts of 7th International Workshop on Radiation Imaging Detectors, 4–7 July 2005, Grenoble, France, p. 27
[38] A. Šilėnas, J. Požela, K. Požela, V. Jasutis, L. Dapkus, and V. Jucienė, Non-uniformly-doped graded-gap Al-GaAs X-ray detectors with high photovoltaic response. Nucl. Instrum. Methods A 487, 54–59 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)00945-2
[39] A. Šilėnas, Graded-gap AxGa1−xAs ionizing radiation detectors, Lithuanian J. Phys. 44, 49–57 (2004),
http://dx.doi.org/10.3952/lithjphys.44106
[40] A. Šilėnas, K. Požela, L. Dapkus, V. Jasutis, V. Jucienė, J. Požela, and K.M. Smith, Graded-gap AlxGa1−xAs X-ray detector with collected charge multiplication, Nucl. Instrum. Methods A 509, 30–33 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01544-4
[41] L. Dapkus, K. Požela, J. Požela, A. Šilėnas, V. Jucienė, and V. Jasutis, Behavior of graded-gap detectors of ionizing radiation under irradiation with alpha particles, Semicond. 38(9), 1111–1114 (2004),
http://dx.doi.org/10.1134/1.1797495
[42] A. Šilėnas, L. Dapkus, K. Požela, J. Požela, V. Jucienė, and V. Jasutis, Radiation hardness of graded-gap AlxGa1−xAs X-ray detectors, Nucl. Instrum. Methods A 546, 228–231 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.049