[PDF]
http://dx.doi.org/10.3952/lithjphys.45606
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 423–436 (2005)
MICROWAVE RADIATION AND
X-RAY-INDUCED PHENOMENA IN SEMICONDUCTORS
S. Ašmontasa,b, A. Laurinavičiusa, J.
Paukštėb, and A. Šilėnasa
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: asmontas@uj.pfi.lt
bPanevėžys Institute, Kaunas University of
Technology, Klaipėdos 1, LT-35209 Panevėžys, Lithuania
Received 21 December 2005
We review experimental results on interaction
of microwave and X-rays with various semiconductors that have been
obtained at the Semiconductor Physics Institute starting from the
pioneering works of J. Požela up to his latest achievements.
Special attention is paid to the microwave technique allowing one
to estimate the hot electron diffusion coefficient in
semiconductors and the bigradient effect, the phenomenon which has
been recognized as a discovery in 1977. The application aspects of
the above research are furthered in two different approaches: in
microwave range, this is done via non-destructive characterization
of material homogeneity either by excitation of the helicon waves
or by a local excitation of millimetre waves in the tested sample,
while in X-ray range this is exposed in the application of
inhomogeneous and graded-gap semiconductors to convert the X-rays
into optical range thus enabling their detection by conventional
CCD cameras.
Keywords: microwaves, helicons, hot carriers, semiconductor
X-ray detectors
PACS: 61.82.Fk, 72.20.-i, 07.05.Pj, 78.70.-g, 29.40Wk
MIKROBANGŲ IR RENTGENO
SPINDULIUOTĖS SUKELIAMI REIŠKINIAI PUSLAIDININKIUOSE
S. Ašmontasa,b, A. Laurinavičiusa, J.
Paukštėb, A. Šilėnasa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bKauno technologijos universiteto Panevėžio
institutas, Panevėžys, Lietuva
Pateikti mikrobangų ir Rentgeno spinduliuotės
sąveikos su įvairiais puslaidininkiais eksperimentiniai tyrimai,
atlikti Puslaidininkių fizikos institute, pradedant novatoriškais
J. Poželos darbais ir baigiant paskutiniųjų metų rezultatais.
Pagrindinis dėmesys buvo skirtas mikrobangų metodui, leidžiančiam
nustatyti karštųjų elektronų difuzijos koeficientą
puslaidininkiuose, ir bigradientiniam efektui, kuris 1977 metais
buvo pripažintas atradimu. Taikomasis šių tyrimų pobūdis
atskleidžiamas, apžvelgiant neardančius paviršiaus puslaidininkių
parametrų nustatymo metodus, panaudojant helikonines bangas arba
lokaliai sužadinant milimetrines bangas bandiniuose, bei Rentgeno
spinduliuotės konversiją į infraraudonąją šviesą varizoniniuose AlxGa1−xAs
dariniuose, įgalinančią nuskaityti Rentgeno vaizdą įprastine CCD
kamera.
References / Nuorodos
[1] A. Vebra and J. Pozhela, Investigation of carrier mobility in
germanium in high electric fields, Trudy Akademii Nauk Litovskoy SSR
B 2(25), 99–105 (1961) [in Russian]
[2] V. Dienys and J. Požela, Hot Electrons (Mintis, Vilnius,
1971) [in Russian]
[3] T. Banys, J. Paršeliūnas, and J. Pozhela, Absolute negative
resistance of gallium arsenide under the influence of strong
microwave field, Fiz. Tekh. Poluprovodn. (Sov. Phys. Semicond.) 5,
1990–1992 (1971)
[4] T. Banys, J. Paršeliūnas, and J. Pozhela, High-voltage microwave
emf in GaAs, Lietuvos Fizikos Rinkinys 11, 1013–1019 (1971)
[5] J. Pozhela, K. Repšas, and V. Shilalnikas, Hot current carriers
in Ge and Si, in: Proceedings of International Conference on the
Physics of Semiconductors, Exeter, England, 1962, pp. 149–151
[6] S. Ašmontas, Electrogradient Phenomena in Semiconductors
(Mokslas, Vilnius, 1984) [in Russian]
[7] J.K. Pozhela, Plasma and Current Instabilities in
Semiconductors (Pergamon Press,New York, 1981),
http://dx.doi.org/10.1016/B978-0-08-025048-9.50007-X
[8] A. Laurinavičius and J. Požela, Investigation of helicon waves
from magnetoreflection in InSb samples at microwave frequencies,
Lietuvos Fizikos Rinkinys 11, 65–71 (1971)
[9] J. Požela and R. Tolutis, Investigation of semiconductors by
helicon waves, in: Many-valley Semiconductors (Mokslas,
Vilnius, 1978), pp. 87–142
[10] L. Laurinavičius and R. Tolutis, Semiconductor alloy
resonator-type HF isolators, Electron. Lett. 18, 243–244
(1982),
http://dx.doi.org/10.1049/el:19820167
[11] L. Laurinavičius and R. Tolutis, Semiconductor valve, Prib.
Tekh. Eksp. (Instrum. Exp. Tech. (USSR)) 25(4), 255 (1982)
[in Russian]
[12] A. Šilėnas, J. Požela, V.M. Smith, K. Požela, V. Jasutis, L.
Dapkus, and V. Jucienė, Non-uniformly doped gruded-gap AlxGa1−xAs
X-ray detectors with high photovoltaic response, Nucl. Instrum.
Methods A 487, 54–59 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)00945-2
[13] K. Požela, J. Požela, V. Jasutis, L. Dapkus, and A. Šilėnas,
New type X-ray detector with optical response, in: Proceedings
of the 24th Workshop on Compound Semiconductors Devices and
Integrated Circuits, Aegean Sea, Greece, May 29 – June 02,
2000, pp. XIV-17–XIV-18
[14] S. Ašmontas and L. Subačius, Hot electron diffusion coefficient
in germanium, Lietuvos Fizikos Rinkinys 17, 71–78 (1977) [in
Russian; English translation in: Sov. Phys. Collection 17,
43–48 (Allerton Press Inc., New York, 1977)]
[15] S. Ašmontas, J. Požela, L. Subačius, and G. Valušis, Electron
gas heating and cooling effects by microwave electric fields in
compensated InSb, Solid-State Electron. 31, 701–703 (1988),
http://dx.doi.org/10.1016/B978-0-08-036237-3.50092-9
[16] S. Ašmontas, S. Dedulevičius, Ž. Kancleris, L. Subačius, and G.
Valušis, Investigation of hot electron relaxation in electric fields
in compensated InSb<Cr>, Lietuvos Fizikos Rinkinys 32,
425–433 (1992) [in Russian; English translation in: Lithuanian J.
Phys. 32, 224–228 (Allerton Press Inc., New York, 1992)]
[17] Z.S. Gribnikov and V.A. Kochelap, Cooling of current carriers
scattering their energy on the optical lattice vibrations, Sov.
Phys. JETP 12(3), 1046–1056 (1970)
[18] S. Ašmontas and L. Subačius, Hot electron thermoemf in
compensated InSb<Cr>, Fiz. Tekh. Poluprovodn. (Sov. Phys.
Semicond.) 16, 40–47 (1982)
[19] S.P. Ashmontas, Yu.K. Pozhela, and L.E. Subachyus, Heating and
cooling of electron gas in electric fields in compensated indium
antimonide, JETP Lett. 33(11), 564–567 (1981)
[20] V. Bareikis, R. Katilius, and R. Miliušytė, Fluctuation
Phenomena in Semiconductors in Nonequilibrium State (Mokslas,
Vilnius, 1989)
[21] S. Ašmontas, J. Liberis, L. Subačius, and G. Valušis, Electron
gas cooling studied by measurements of noise temperature, Semicond.
Sci. Technol. 7, B331–B333 (1992),
http://dx.doi.org/10.1088/0268-1242/7/3B/084
[22] S. Ašmontas, K. Požela, and K. Repšas, Investigation of I–V
characteristics of Ge and Si asymmetrically necked samples, Lietuvos
Fizikos Rinkinys 15, 249–258 (1975)
[23] S. Ašmontas, Study of electron heating by nonuniform electric
fields in n-Si, Phys. Status Solidi A 31, 409
(1975),
http://dx.doi.org/10.1002/pssa.2210310208
[24] S. Ašmontas, J. Pozhela, and K. Repšas, Phenomenon of
Electromotive Force and Asymmetry of Electrical Conductivity in
Uniform Isotropic Semiconductor, Diploma of discovery No. 185,
Bulletin of Inventions (39), 1 (1977) [in Russian]
[25] S. Ašmontas, A. Juozapavičius, D. Seliuta, E. Širmulis, V.
Tamošiūnas, G. Valušis, and K. Köhler, Inplane shaped GaAs/AlGaAs
modulation-doped structures: Physics and applications for THz /
subTHz sensing, in: Trends in Semiconductor Research, ed.
T.B. Elliot (Nova Science Pub. Inc., New York, 2005) pp. 59–80
[26] E.D. Palik and J.K. Furdyna, Infrared and microwave
magnetoplasma effects in semiconductors, Rep. Prog. Phys. 33(12),
1193–1322 (1970),
http://dx.doi.org/10.1088/0034-4885/33/3/307
[27] A. Laurinavičius and J. Požela, Contactless measurement of free
charge carrier distribution in volume of the narrow gap
semiconductors, Prib. Tekh. Eksp. (Instrum. Exp. Tech. (USSR))
19(4), 241–242, (1976) [in Russian]
[28] A. Laurinavičius, J. Požela, and R. Tolutis, Helicon
diagnostics of narrow gap semiconductor quality, in: Proceedings
of the 10th World Conference on Non Destructive Testing 3
(Moscow, 1982), pp. 265–273
[29] A. Laurinavičius and J. Požela, Helicon diagnostics, Nauka v
SSSR, No. 6, 34–38 (1987) [in Russian]
[30] A. Laurinavičius, P. Malakauskas, and J. Požela, Semiconductor
non-destructive testing by helicon waves, Int. J. Infrared
Millimeter Waves 8(5), 573–582 (1987),
http://dx.doi.org/10.1007/BF01013265
[31] A. Laurinavičius, T. Anbinderis, O. Martjanova, J. Prišutov, A.
Abrutis, and A. Teišerskis, Nondestructive material homogeneity
characterization by millimeter waves, Int. J. Infrared Millimeter
Waves 22(7), 961–965 (2001),
http://dx.doi.org/10.1023/A:1014978702228
[32] K. Požela, J. Požela, and V. Jucienė, Light emitted GaAs
detectors, Nucl. Instrum. Methods A 410, 111–114 (1998),
http://dx.doi.org/10.1016/S0168-9002(98)00190-9
[33] J. Požela, K. Požela, A. Šilėnas, V. Juciene, L. Dapkus, V.
Jasutis, G. Tamulaitis, A. Žukauskas, and R.-A. Bendorius, The
AlGaAs light emitting particle detector, Nucl. Instrum. Methods A 434,
169–172 (1999),
http://dx.doi.org/10.1016/S0168-9002(99)00458-1
[34] K. Požela, J. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, and V.
Jucienė, The AlxGa1−xAs X-ray
imaging detector, Nucl. Instrum. Methods A 460, 119–122
(2001),
http://dx.doi.org/10.1016/S0168-9002(00)01105-0
[35] A. Šilėnas, J. Požela, K. Požela, V. Jasutis, L. Dapkus, and V.
Jucienė, Graded-gap AlxGa1−xAs
X-ray detectors with fast photovoltaic response, Mater. Sci. Forum 384–385,
287–290 (2002),
http://dx.doi.org/10.4028/www.scientific.net/MSF.384-385.287
[36] J. Požela, K. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, A.
Kinduris, and V. Jucienė, A graded-gap detector of ionizing
radiation, Semicond. 36, 116–120 (2002),
http://dx.doi.org/10.1134/1.1434523
[37] A. Šilėnas, J. Požela, K. Požela, L. Dapkus, and V. Jucienė,
High spatial resolution graded-gap AlGaAs X-ray detector, in: Abstracts
of 7th International Workshop on Radiation Imaging Detectors,
4–7 July 2005, Grenoble, France, p. 27
[38] A. Šilėnas, J. Požela, K. Požela, V. Jasutis, L. Dapkus, and V.
Jucienė, Non-uniformly-doped graded-gap Al-GaAs X-ray detectors with
high photovoltaic response. Nucl. Instrum. Methods A 487,
54–59 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)00945-2
[39] A. Šilėnas, Graded-gap AxGa1−xAs
ionizing radiation detectors, Lithuanian J. Phys. 44, 49–57
(2004),
http://dx.doi.org/10.3952/lithjphys.44106
[40] A. Šilėnas, K. Požela, L. Dapkus, V. Jasutis, V. Jucienė, J.
Požela, and K.M. Smith, Graded-gap AlxGa1−xAs
X-ray detector with collected charge multiplication, Nucl. Instrum.
Methods A 509, 30–33 (2003),
http://dx.doi.org/10.1016/S0168-9002(03)01544-4
[41] L. Dapkus, K. Požela, J. Požela, A. Šilėnas, V. Jucienė, and V.
Jasutis, Behavior of graded-gap detectors of ionizing radiation
under irradiation with alpha particles, Semicond. 38(9),
1111–1114 (2004),
http://dx.doi.org/10.1134/1.1797495
[42] A. Šilėnas, L. Dapkus, K. Požela, J. Požela, V. Jucienė, and V.
Jasutis, Radiation hardness of graded-gap AlxGa1−xAs
X-ray detectors, Nucl. Instrum. Methods A 546, 228–231
(2005),
http://dx.doi.org/10.1016/j.nima.2005.03.049