[PDF]
http://dx.doi.org/10.3952/lithjphys.45609
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 45, 477–480 (2005)
DRIFT VELOCITY MEASUREMENT AND
HOT ELECTRON CAPTURE IN AlGaN / AlN / GaN
O. Kiprijanovič, A. Matulionis, J. Liberis, and L. Ardaravičius
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: matulionis@pfi.lt
Received 26 August 2005
Nanosecond technique was used to control the
electron density during the electron drift velocity measurement in
the absence of channel self-heating. A threshold-type hot electron
capture is determined to be reducing the density of mobile
electrons: the reduction up to 30% is found in the investigated
range of fields below 65 kV/cm at room temperature. No change in
electron density is found in the range below 25 kV/cm. The
corrected drift velocity data are presented.
Keywords: nitride heterostructures, hot electrons, drift
velocity, two-dimensional electron gas, AlGaN / AlN / GaN
PACS: 72.20.-I; 72.20.Ht; 73.21.Fg
KARŠTŲJŲ ELEKTRONŲ PAGAVIMAS IR
JŲ DREIFO GREIČIO MATAVIMAS AlGaN / AlN / GaN
O. Kiprijanovič, A. Matulionis, J. Liberis, L. Ardaravičius
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Nanosekundine impulsine technika, leidžiančia
išvengti kvantinės protakos kaitimo, buvo matuojamas elektronų
dreifo greitis ir elektronų tankio pokytis. Pastebėta, kad dėl
karštųjų elektronų pagavimo sumažėja judriųjų elektronų tankis.
Sumažėjimas pasiekia net 30% kambario temperatūroje, kai lauko
stipris artimas 65 kV/cm. Kai laukai silpnesni už 25 kV/cm,
elektronų tankio kitimo nepastebėta. Pateikta pakoreguota,
atsižvelgiant į elektronų tankio kitimą, elektronų dreifo greičio
priklausomybė nuo elektrinio lauko stiprio.
References / Nuorodos
[1] L.F. Eastman, V. Tilak, V. Kaper, J. Smart, R. Thompson, B.
Green, J.R. Shealy, and T. Prunty, Progress in high-power, high
frequency AlGaN / GaN HEMTs, Phys. Status Solidi A 194(2),
433–438 (2002),
http://dx.doi.org/10.1002/1521-396X(200212)194:2<433::AID-PSSA433>3.0.CO;2-R
[2] U.K. Mishra, Gallium nitride electronics: Watt is the limit?,
in: IEEE 62nd Device Research Conference Digest (Notre Dame,
Indiana, USA, June 21–24, 2004) pp. 3–5,
http://dx.doi.org/10.1109/DRC.2004.1367754
[3] Y. Ando, Y. Okamoto, T. Nakayama, T. Inoue, K. Hataya, H.
Miyamoto, M. Senda, K. Hirata, M. Kosaki, N. Shibata, and M.
Kuzuhara, High power AlGaN / GaN heterojunction FETs for base
station applications, in: IEEE 62nd Device Research Conference
Digest (Notre Dame, Indiana, USA, June 21–24, 2004) p. 31,
http://dx.doi.org/10.1109/DRC.2004.1367769
[4] L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbes, R.
Dimitrov, H. Kim, O.S. Ambacher, N. Weimann, T. Prunty, M. Murphy,
W.J. Schaff, and J.R. Shealy, Undoped AlGaN / GaN HEMTs for
microwave power amplification, IEEE Trans. Electron Devices 48(3),
479–485 (2001),
http://dx.doi.org/10.1109/16.906439
[5] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M.
Asif Khan, and I. Adesida, AlGaN / GaN HEMTs on SiC with fT
of over 120 GHz, IEEE Electron Device Lett. 23(8), 455–457
(2002),
http://dx.doi.org/10.1109/LED.2002.801303
[6] A. Vertiatchikh, H. Kim, W.J. Schaff, L.F. Eastman, R. Thompson,
V. Kaper, and R. Shealy, Bias dependent frequency response of AlGaN
/ GaN HEMT, in: Proceedings of the 27th Workshop on Compound
Semiconductor Devices and Integrated Circuits held in Europe
(Fürigen, Switzerland, 2003) pp. 41–42
[7] C.H. Oxley and M.J. Uren, Measurements of unity gain cutoff
frequency and saturation velocity of a GaN HEMT transistor, IEEE
Trans. Electron Devices 52(2), 165–169 (2005),
http://dx.doi.org/10.1109/TED.2004.842719
[8] T.-H. Yu and K. Brennan, Monte Carlo calculation of
two-dimensional electron dynamics in GaN–AlGaN heterostructures, J.
Appl. Phys. 91(6), 3730–3736 (2002),
http://dx.doi.org/10.1063/1.1448889
[9] M. Wraback, H. Shen, S. Rudin, E. Bellotti, M. Goano, J.C.
Carrano, C.J. Collins, J.C. Campbell, and R.D. Dupuis,
Direction-dependent band nonparabolicity effects on high-field
transient electron transport in GaN, Appl. Phys. Lett. 82(21),
3674–3676 (2003),
http://dx.doi.org/10.1063/1.1577833
[10] J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A.E.
Wickenden, and R.L. Henry, Measurements of the velocity-field
characteristic in AlGaN / GaN heterostructures, Microelectronics
Eng. 63(1–3), 193–197 (2002),
http://dx.doi.org/10.1016/S0167-9317(02)00627-5
[11] L. Ardaravičius, J. Liberis, A. Matulionis, L.F. Eastman, J.R.
Shealy, and A. Vertiatchikh, Phys. Status Solidi A 201(2),
203–206 (2004),
http://dx.doi.org/10.1002/pssa.200303901
[12] M. Ramonas, A. Matulionis, and L. Rota, Monte Carlo simulation
of hot-phonon and degeneracy effects in the AlGaN / GaN
two-dimensional electron gas channel, Semicond. Sci. Technol. 18(2),
118–123 (2003),
http://dx.doi.org/10.1088/0268-1242/18/2/310
[13] B.K. Ridley, W.J. Schaff, and L.F. Eastman, Hotphonon-induced
velocity saturation in GaN, J. Appl. Phys. 96(3), 1499–1502 (2004),
http://dx.doi.org/10.1063/1.1762999
[14] J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A.
Allerman, and R.L. Shul, Effect of surface treatment on the
velocity-field characteristics of AlGaN / GaN heterostructures,
Semicond. Sci. Technol. 19(4), S478–S480 (2004),
http://dx.doi.org/10.1088/0268-1242/19/4/157
[15] L. Ardaravičius, A. Matulionis, J. Liberis, O. Kiprijanovič, M.
Ramonas, L.F. Eastman, J.R. Shealy, and A. Vertiatchikh, Electron
drift velocity in AlGaN / GaN channel at high electric fields, Appl.
Phys. Lett. 83(19), 4038–4040 (2003),
http://dx.doi.org/10.1063/1.1626258
[16] J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A.
Allerman, and R.L. Shul, High field transport in GaN / AlGaN
heterostructures, J. Vac. Sci. Technol. B 22(4), 2045–2050
(2004),
http://dx.doi.org/10.1116/1.1775199
[17] L. Ardaravičius, M. Ramonas, O. Kiprijanovič, J. Liberis, A.
Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, and Y. Sun,
Comparative analysis of hot-electron transport in AlGaN / GaN and
AlGaN / AlN / GaN, Phys. Status Solidi A 200(5), 808–811
(2005),
http://dx.doi.org/10.1002/pssa.200461618
[18] M. Ramonas, A. Matulionis, J. Liberis, L.F. Eastman, X. Chen,
and Y.-J. Sun, Hot-phonon effect on power dissipation in a biased AlxGa1−xN
/ AlN / GaN channel, Phys. Rev. B 71(7), 075324-1–8 (2005),
http://dx.doi.org/10.1103/PhysRevB.68.035338