[PDF]
http://dx.doi.org/10.3952/lithjphys.46101
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 7–18 (2006)
Review
NONLINEAR LOCALIZATION OF LIGHT
∗
A. Dubietis, G. Valiulis, and A. Varanavičius
Department of Quantum Electronics, Vilnius University,
Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt
Received 1 September 2005
We briefly overview historical, fundamental,
and practical aspects of light wave propagation, where strong
multidimensional localization and precise control of ultrashort
signals is demanded. The main topic is focused on the state of art
of recently discovered nonlinear conical waves, or so-called
X-shaped light bullets, which have been demonstrated to appear
spontaneously in many different, frequently encountered operating
regimes in transparent gaseous, liquid, and solid media. Owing to
unique features of white-light frequency spectrum, strong
localization, deep-field stationarity, and hot-spot regeneration
property, nonlinear conical waves have great potential in all
applications requiring energy transfer to matter over very limited
transverse areas in thick media, which thus suffer the short focal
depth of conventional laser beams. Practical applications that
cover many different areas ranging from nano-science to high-field
physics are discussed.
Keywords: light bullets, X waves and X pulses, Bessel beams,
light filaments, conical waves, solitons, self-focusing
PACS: 41.20.Jb, 42.25.Bs, 42.65.Re, 42.65.Jx
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
NETIESINĖ ŠVIESOS LOKALIZACIJA
A. Dubietis, G. Valiulis, A. Varanavičius
Vilniaus universitetas, Vilnius, Lietuva
Vienas aktualiausių šiuolaikinės optikos
uždavinių – rasti būdus ir sąlygas, kaip išvengti itin trumpų
bangų paketų (lazerio pluoštų ir impulsų) plėtros, kurią lemia
dispersija ir difrakcija. Toks uždavinys yra svarbus tiek
fundamentiniu, tiek ir praktiniu požiūriu. Neseniai atrastos
netiesinės kūginės X bangos atveria galimybes formuoti naujo tipo
sutelktos energijos darinius (šviesos kulkas) ir valdyti jų
savybes, vykstant stipriai šviesos sąveikai su medžiaga. Apžvelgti
naujausi netiesinės optikos pasiekimai šviesos lokalizacijos
srityje, siūlantys naują požiūrį į šviesos saviveikos reiškinius
bei išryškinantys laiko ir erdvės reiškinių neatsiejamumą.
Aptartos kokybiškai naujų šviesos darinių – netiesinių X bangų
(šviesos kulkų) savaiminio radimosi skaidriose medžiagose
prielaidos, dėsningumai ir eksperimentinio realizavimo būdai.
Unikalios šviesos kulkų savybės – platus dažnių spektras, didelė
energijos sankaupa mažame erdvės tūryje ir laiko intervale,
sklidimo nuostovumas, taip pat galimybė valdyti jų parametrus –
atveria plačias taikymo galimybes ten, kur įprastinių lazerio
pluoštų taikymas yra neefektyvus, o kartais net ir sunkiai
įmanomas.
References / Nuorodos
[1] F. Wise and P. Di Trapani, The hunt for light bullets –
spatiotemporal solitons, Opt. Photon. News 13(2), 27–32
(2002),
http://dx.doi.org/10.1364/OPN.13.2.000028
[2] J. Scott Russell, Report on waves, in: Report of the XIV
Meeting of the British Association for the Advancement of Science,
York, September 1844, pp. 311–390
[3] L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, Experimental
observation of picosecond pulse narrowing and solitons in optical
fibers, Phys. Rev. Lett. 45, 1096–1099 (1980),
http://dx.doi.org/10.1103/PhysRevLett.45.1095
[4] Y. Silberberg, Collapse of optical pulses, Opt. Lett. 15,
1282–1284 (1990),
http://dx.doi.org/10.1364/OL.15.001282
[5] M. Ablowitz, G. Biondini, and L.A. Ostrovsky, Optical solitons:
Perspectives and applications, Chaos 10, 471–474 (2000),
http://dx.doi.org/10.1063/1.1310721
For a review on χ2 soltons see A.V. Buryak, P. Di
Trapani, D.V. Skryabin, and S. Trillo, Optical solitons due to
quadratic nonlinearities: From basic physics to futuristic
applications, Phys. Rep. 370, 63–235 (2002),
http://dx.doi.org/10.1016/S0370-1573(02)00196-5
[6] Y.F. Chen, K. Beckwitt, F. Wise, and B.A. Malomed, Criteria for
the experimental observation of multidimensional optical solitons in
saturable media, Phys. Rev. E 70, 046610 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.046610
[7] H. Bateman, The Mathematical Analysis of Electrical and
Optical Wave Motion on the Basis of Maxwell's Equations
(Dover, New York, 1955)
[8] J.A. Stratton, Electromagnetic Theory (McGraw Hill, New
York, 1941)
[9] J. Durnin, Exact solutions for nondiffracting beams. I. The
scalar theory, J. Opt. Soc. Am. A 4, 651–654 (1987),
http://dx.doi.org/10.1364/JOSAA.4.000651
[10] J. Durnin, J.J. Miceli, and J.H. Eberly, Diffraction-free
beams, Phys. Rev. Lett. 58, 1499–1502 (1987),
http://dx.doi.org/10.1103/PhysRevLett.58.1499
[11] D. McGloin and K. Dholakia, Bessel beams: Diffraction in a new
light, Contemporary Physics 41, 15–28 (2005),
http://dx.doi.org/10.1080/0010751042000275259
[12] P. Saari and K. Reivelt, Evidence of X-shaped
propagation-invariant localized light waves, Phys. Rev. Lett. 79,
4135–4138 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.4135
[13] M.A. Porras, Diffraction-free and dispersion-free pulsed beam
propagation in dispersive medium, Opt. Lett. 26, 1364–1366
(2001),
http://dx.doi.org/10.1364/OL.26.001364
[14] S. Orlov, A. Piskarskas, and A. Stabinis, Localized optical
subcycle pulses in dispersive media, Opt. Lett. 27,
2167–2169 (2002),
http://dx.doi.org/10.1364/OL.27.002167
[15] R. Grunwald, V. Kebbel, U. Neuman, M. Rini, E. Nibbering, M.
Piché, G. Rousseau, and M. Fortin, Generation and characterization
of spatially and temporally localized few-cycle optical wave
packets, Phys. Rev. A 67, 063820 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.063820
[16] R.Y. Chiao, E. Garmire, and C.H. Townes, Self-trapping of
optical beams, Phys. Rev. Lett. 13, 479–482 (1964),
http://dx.doi.org/10.1103/PhysRevLett.13.479
[17] L. Bergé, Wave collapse in physics: Principles and applications
to light and plasma waves, Phys. Rep. 303, 259–370 (1998),
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
[18] A.L. Gaeta, Collapsing light really shines, Science 301,
54–55 (2003),
http://dx.doi.org/10.1126/science.1083629
[19] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou,
Self-channeling of high-peak-power femtosecond laser pulses in air,
Opt. Lett. 20, 73–75 (1995),
http://dx.doi.org/10.1364/OL.20.000073
[20] J.V. Moloney, M. Kolesik, M. Mlejnek, and E.M. Wright,
Femtosecond self-guided light strings, Chaos 10, 559–569
(2000),
http://dx.doi.org/10.1063/1.1288033
[21] A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and
A. Mysyrowicz, Infrared femtosecond light filaments in air:
Simulations and experiments, J. Opt. Soc. Am. B 19,
1117–1131 (2002),
http://dx.doi.org/10.1364/JOSAB.19.001117
[22] W. Liu, S.A. Hosseini, Q. Luo, B. Ferland, S.L. Chin, O.G.
Kosareva, N.A. Panov, and V.P. Kandidov, Experimental observation
and simulations of the self-action of white light laser pulse
propagating in air, New J. Phys. 6, 6.1–6.22 (2004),
http://dx.doi.org/10.1088/1367-2630/6/1/006
[23] S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz,
A. Couairon, and L. Bergé, Self-guided propagation of ultrashort IR
laser pulses in fused silica, Phys. Rev. Lett. 87, 213902
(2001),
http://dx.doi.org/10.1103/PhysRevLett.87.213902
[24] A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz,
Filamentation and damage in fused silica induced by tightly focused
femtosecond laser pulses, Phys. Rev. B 71, 125435 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.125435
[25] A. Brodeur, F.A. Ilkov, and S.L. Chin, Beam filamentation and
the white light continuum divergence, Opt. Commun. 129,
193–198 (1996),
http://dx.doi.org/10.1016/0030-4018(96)00144-7
[26] A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius,
Self-guided propagation of femtosecond light pulses in water, Opt.
Lett. 28, 1269–1271 (2003),
http://dx.doi.org/10.1364/OL.28.001269
[27] W. Liu, S.L. Chin, O.G. Kosareva, I.S. Golubtsov, and V.P.
Kandidov, Multiple refocusing of a femtosecond laser pulse in a
dispersive liquid (methanol), Opt. Commun. 225, 193–209
(2003),
http://dx.doi.org/10.1016/j.optcom.2003.07.024
[28] A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di
Trapani, Nonlinear X-wave formation by femtosecond filamentation in
water, Phys. Rev. E (submitted),
http://dx.doi.org/10.1103/PhysRevE.73.016608
[29] A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani,
Light filaments without self-channeling, Phys. Rev. Lett. 92,
253903 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.253903
[30] A. Dubietis, E. Kučinskas, G. Tamošauskas, E. Gaižauskas, M.A.
Porras, and P. Di Trapani, Self-reconstruction of light filaments,
Opt. Lett. 29, 2893–2895 (2004),
http://dx.doi.org/10.1364/OL.29.002893
[31] M. Kolesik and J.V. Moloney, Self-healing femtosecond light
filaments, Opt. Lett. 29, 590–592 (2004),
http://dx.doi.org/10.1364/OL.29.000590
[32] W. Liu, J.-F. Gravel, F. Théberge, A. Becker, and S.L. Chin,
Background reservoir: Its crucial role for long-distance propagation
of femtosecond laser pulses in air, Appl. Phys. B 80,
857–860 (2005),
http://dx.doi.org/10.1007/s00340-005-1805-6
[33] M.A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di
Trapani, Nonlinear unbalanced Bessel beams: Stationary conical waves
supported by nonlinear losses, Phys. Rev. Lett. 93, 153902
(2004),
http://dx.doi.org/10.1103/PhysRevLett.93.153902
[34] G. Valiulis, J. Kilius, O. Jedrkiewicz, A. Bramati, S. Minardi,
C. Conti, S. Trillo, A. Piskarskas, and P. Di Trapani, Space-time
nonlinear compression and three-dimensional complex trapping in
normal dispersion, in: Trends in optics and photonics, Vol.
57, postdeadline paper QPD10-1 (Optical Society of America,
Washington DC, 2001),
http://dx.doi.org/10.1109/QELS.2001.962252
[35] C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas,
O. Jedrkiewicz, and J. Trull, Nonlinear electromagnetic X-waves,
Phys. Rev. Lett. 90, 170406 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.170406
[36] P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J.
Trull, C. Conti, and S. Trillo, Spontaneously generated X-shaped
light bullets, Phys. Rev. Lett. 91, 093904 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.093904
[37] O. Jedrkiewicz, J. Trull, G. Valiulis, A. Piskarskas, C. Conti,
S. Trillo, and P. Di Trapani, Nonlinear X waves in second-harmonic
generation: Experimental results, Phys. Rev. E 68, 026610
(2003),
http://dx.doi.org/10.1103/PhysRevE.68.026610
[38] J. Trull, O. Jedrkiewicz, P. Di Trapani, A. Matijošius, A.
Varanavičius, G. Valiulis, R. Danielius, E. Kučinskas, and A.
Piskarskas, Spatiotemporal three-dimensional mapping of nonlinear X
waves, Phys. Rev. E 69, 026607 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.026607
[39] M.A.C. Potenza, S. Minardi, J. Trull, G. Blasi, D. Salerno, A.
Varanavičius, A. Piskarskas, and P. Di Trapani, Three dimensional
imaging of short pulses, Opt. Commun. 229, 381–390 (2004),
http://dx.doi.org/10.1016/j.optcom.2003.10.029
[40] M. Kolesik, E.M. Wright, and J.V. Moloney, Dynamic nonlinear X
waves for femtosecond pulse propagation in water, Phys. Rev. Lett.
92, 253901 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.253901
[41] C. Day, Intense X-shaped pulses of light propagate without
spreading in water and other dispersive media, Phys. Today 57(10),
25–27 (2004),
http://dx.doi.org/10.1063/1.1825261
[42] A. Matijošius, J. Trull, P. Di Trapani, A. Dubietis, R.
Piskarskas, A. Varanavičius, and A. Piskarskas, Nonlinear space-time
dynamics of ultrashort wave packets in water, Opt. Lett. 29,
1123–1125 (2004),
http://dx.doi.org/10.1364/OL.29.001123
[43] D. Faccio, P. Di Trapani, S. Minardi, A. Bramati, F. Bragheri,
C. Liberale, V. Degiorgio, A. Dubietis, and A. Matijošius, Far-field
spectral characterization of conical emission and filamentation in
Kerr media, J. Opt. Soc. Am. B 22, 862–869 (2005),
http://dx.doi.org/10.1364/JOSAB.22.000862
[44] D. Faccio, A. Matijošius, A. Dubietis, R. Piskarskas, A.
Varanavičius, E. Gaižauskas, A. Piskarskas, A. Couairon, and P. Di
Trapani, Near- and far-field evolution of laser pulse filaments in
Kerr media, Phys. Rev. E 72, 037601-1–4 (2005),
http://dx.doi.org/10.1103/PhysRevE.72.037601
[45] K.D. Moll and A.L. Gaeta, Role of dispersion in
multiple-collapse dynamics, Opt. Lett. 29, 995–997 (2004),
http://dx.doi.org/10.1364/OL.29.000995
[46] L. Bergé and S. Skupin, Self-channeling of ultrashort laser
pulses in materials with anomalous dispersion, Phys. Rev. E 71,
065601(R) (2005),
http://dx.doi.org/10.1103/PhysRevE.71.065601
[47] M.A. Porras, A. Parola, and P. Di Trapani, Nonlinear unbalanced
O waves: Nonsolitary, conical light bullets in nonlinear dissipative
media, J. Opt. Soc. Am. B 22, 1406–1413 (2005),
http://dx.doi.org/10.1364/JOSAB.22.001406
[48] R. Butkus, S. Orlov, A. Piskarskas, V. Smilgevičius, and A.
Stabinis, Phase matching of optical X-waves in nonlinear crystals,
Opt. Commun. 244, 411–421 (2005),
http://dx.doi.org/10.1016/j.optcom.2004.09.047
[49] S. Longhi and D. Janner, X-shaped waves in photonic crystals,
Phys. Rev. B 70, 235123 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.235123
[50] S. Droulias, K. Hizanidis, J. Meier, and D.N. Christoduolides,
X-waves in nonlinear normally dispersive waveguide arrays, Opt.
Express 13, 1827–1832 (2005),
http://dx.doi.org/10.1364/OPEX.13.001827
[51] J. Kasparian, M. Rodriguez, G. Mejéan, J. Yu, R. Bourayou, S.
Frey, Y.B. André, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, and L.
Wöste, White-light filaments for atmospheric analysis, Science 301,
61–64 (2003),
http://dx.doi.org/10.1126/science.1085020
[52] M. Rodriguez, R. Bourayou, G. Mejéan, J. Kasparian, J. Yu, E.
Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A.P. Hatzes,
R. Sauerbrey, L. Wöste, and J.-P. Wolf, Kilometer-range nonlinear
propagation of femtosecond laser pulses, Phys. Rev. E 69,
036607 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.036607
[53] H.R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger,
and P. Agostini, High-order harmonic generation and quasiphase
matching in xenon using self guided femtosecond pulses, Phys. Rev.
Lett. 81, 1611–1614 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.1611
[54] Q. Luo, S.A. Hosseini, and W. Liu, Lasing action in air induced
by ultrafast laser filamentation, Opt. Photon. News 15(9),
44–47 (2004),
http://dx.doi.org/10.1364/OPN.15.000044
[55] X.M. Zhao, J.C. Diels, C.Y. Wang, and J.M. Elizondo,
Femtosecond ultraviolet laser pulse induced lightning discharges in
gasses, IEEE J. Quantum Electron. 31, 599–612 (1995),
http://dx.doi.org/10.1109/3.364418
[56] M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B.
André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J.
Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, Triggering and guiding
megavolt discharges by use of laser-induced ionized filaments, Opt.
Lett. 27, 772–774 (2002),
http://dx.doi.org/10.1364/OL.27.000772
[57] R. Ackermann, K. Stelmarczyk, P. Rohwetter, G. Mejéan, E.
Salmon, J. Yu, J. Kasparian, G. Mechain, V. Bergmann, S. Schaper, B.
Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J.-P. Wolf,
Triggering and guiding of megavolt discharges by laser-induced
filaments under rain conditions, Appl. Phys. Lett. 85,
5781–5783 (2005),
http://dx.doi.org/10.1063/1.1829165
[58] V. Garcez-Chavez, D. McGloin, H. Melville, W. Sibbett, and K.
Dholakia, Simultaneous micromanipulation in multiple planes using a
self-reconstructing light beam, Nature 419, 145–147 (2002),
http://dx.doi.org/10.1038/nature01007
[59] V. Garces-Chavez, D. Roskey, M.D. Summers, H. Melville, D.
McGloin, E.M. Wright, and K. Dholakia, Optical levitation in a
Bessel light beam, Appl. Phys. Lett. 85, 4001–4003 (2004),
http://dx.doi.org/10.1063/1.1814820
[60] J.Y. Ye, G. Chang, T.B. Norris, C. Tse, M.J. Zohdy, K.W.
Hollman, M. O'Donnell, and J.R. Baker Jr, Trapping cavitation
bubbles with a self-focused laser beam, Opt. Lett. 29,
2136–2138 (2004),
http://dx.doi.org/10.1364/OL.29.002136
[61] M. Erdelyi, Z.L. Horvath, G. Szabo, Zs. Bor, F.K. Tittel, J.R.
Cavallaro, and M.C. Smayling, Generation of diffraction-free beams
for applications in optical microlithography, J. Vac. Sci. Technol.
B 15, 287–292 (1997),
http://dx.doi.org/10.1116/1.589280
[62] J. Amako, D. Sawaki, and E. Fujii, Microstructuring transparent
materials by use of nondiffracting ultrashort pulse beams generated
by diffractive optics, J. Opt. Soc. Am. B 20, 2562–2568 (2003),
http://dx.doi.org/10.1364/JOSAB.20.002562
[63] K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, In
situ observation of photoinduced refractive-index changes in
filaments formed in glasses by femtosecond laser pulses, Opt. Lett.
26, 19–21 (2001),
http://dx.doi.org/10.1364/OL.26.000019
[64] P. Polesana, D. Faccio, P. Di Trapani, A. Dubietis, A.
Piskarskas, A. Couairon, and M.A. Porras, High localization, focal
depth and contrast by means of nonlinear Bessel beams, Opt. Express
13, 6160–6167 (2005),
http://dx.doi.org/10.1364/OPEX.13.006160
[65] T. Wulle and S. Herminghaus, Nonlinear optics of Bessel beams,
Phys. Rev. Lett. 70, 1401–1403 (1993),
http://dx.doi.org/10.1103/PhysRevLett.70.1401
[66] A. Piskarskas, V. Smilgevičius, A. Stabinis, and V. Jarutis,
Output patterns of optical parametric amplifiers and generators
pumped by conical beams, J. Opt. A 1, 52–57 (1999),
http://dx.doi.org/10.1088/1464-4266/1/1/011
[67] S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P.
Kandidov, Filamentation and supercontinuum generation during the
propagation of powerful ultrashort laser pulses in optical media
(White Light Laser), J. Nonlinear Opt. Phys. Mat. 8, 121–146
(1999),
http://dx.doi.org/10.1142/S0218863599000096
[68] C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A.
Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Generation of
intense, carrier-envelope phase-locked few-cycle laser pulses
through filamentation, Appl. Phys. B 79, 673–677 (2004),
http://dx.doi.org/10.1007/s00340-004-1650-z
[69] C. Conti and S. Trillo, Nonspreading wave packets in three
dimensions formed by an ultracold Bose gas in an optical lattice,
Phys. Rev. Lett. 92, 120404 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.120404
[70] M. Landman, G. Papanicolaou, C. Sulem, P. Sulem, and X. Wang,
Stability of isotropic self-similar dynamics for scalar-wave
collapse, Phys. Rev. A 46, 7869–7876 (1992),
http://dx.doi.org/10.1103/PhysRevA.46.7869
[71] J. Lu and J.F. Greenleaf, Experimental verification of
nondiffracting X waves, IEEE Trans. Ultrason. Ferroel. Freq. Control
39, 441–446 (1992),
http://dx.doi.org/10.1109/58.143178
[72] D. Mugnai, A. Ranfagni, and R. Ruggeri, Observation of
superluminal behaviors in wave propagation, Phys. Rev. Lett. 84,
4830–4833 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.4830
[73] Z. Jiang and X.-C. Zhang, 2D measurement and spatiotemporal
coupling of few-cycle THz pulses, Opt. Express 5, 243–248
(1999),
http://dx.doi.org/10.1364/OE.5.000243
[74] J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A.
Lonnquist, J. Saily, A. Hakli, J. Ala-Laurinaho, and A. Raisanen,
Millimetre-wave Bessel beams using computer holograms, Electron.
Lett. 37, 834–835 (2001),
http://dx.doi.org/10.1049/el:20010551
[75] L.M. Soroko, Mesooptics (World Scientific, Singapore,
1996)