[PDF]    http://dx.doi.org/10.3952/lithjphys.46101

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 7–18 (2006)

Review

NONLINEAR LOCALIZATION OF LIGHT
A. Dubietis, G. Valiulis, and A. Varanavičius
Department of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt

Received 1 September 2005

We briefly overview historical, fundamental, and practical aspects of light wave propagation, where strong multidimensional localization and precise control of ultrashort signals is demanded. The main topic is focused on the state of art of recently discovered nonlinear conical waves, or so-called X-shaped light bullets, which have been demonstrated to appear spontaneously in many different, frequently encountered operating regimes in transparent gaseous, liquid, and solid media. Owing to unique features of white-light frequency spectrum, strong localization, deep-field stationarity, and hot-spot regeneration property, nonlinear conical waves have great potential in all applications requiring energy transfer to matter over very limited transverse areas in thick media, which thus suffer the short focal depth of conventional laser beams. Practical applications that cover many different areas ranging from nano-science to high-field physics are discussed.
Keywords: light bullets, X waves and X pulses, Bessel beams, light filaments, conical waves, solitons, self-focusing
PACS: 41.20.Jb, 42.25.Bs, 42.65.Re, 42.65.Jx
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


NETIESINĖ ŠVIESOS LOKALIZACIJA
A. Dubietis, G. Valiulis, A. Varanavičius
Vilniaus universitetas, Vilnius, Lietuva

Vienas aktualiausių šiuolaikinės optikos uždavinių – rasti būdus ir sąlygas, kaip išvengti itin trumpų bangų paketų (lazerio pluoštų ir impulsų) plėtros, kurią lemia dispersija ir difrakcija. Toks uždavinys yra svarbus tiek fundamentiniu, tiek ir praktiniu požiūriu. Neseniai atrastos netiesinės kūginės X bangos atveria galimybes formuoti naujo tipo sutelktos energijos darinius (šviesos kulkas) ir valdyti jų savybes, vykstant stipriai šviesos sąveikai su medžiaga. Apžvelgti naujausi netiesinės optikos pasiekimai šviesos lokalizacijos srityje, siūlantys naują požiūrį į šviesos saviveikos reiškinius bei išryškinantys laiko ir erdvės reiškinių neatsiejamumą. Aptartos kokybiškai naujų šviesos darinių – netiesinių X bangų (šviesos kulkų) savaiminio radimosi skaidriose medžiagose prielaidos, dėsningumai ir eksperimentinio realizavimo būdai. Unikalios šviesos kulkų savybės – platus dažnių spektras, didelė energijos sankaupa mažame erdvės tūryje ir laiko intervale, sklidimo nuostovumas, taip pat galimybė valdyti jų parametrus – atveria plačias taikymo galimybes ten, kur įprastinių lazerio pluoštų taikymas yra neefektyvus, o kartais net ir sunkiai įmanomas.


References / Nuorodos


[1] F. Wise and P. Di Trapani, The hunt for light bullets – spatiotemporal solitons, Opt. Photon. News 13(2), 27–32 (2002),
http://dx.doi.org/10.1364/OPN.13.2.000028
[2] J. Scott Russell, Report on waves, in: Report of the XIV Meeting of the British Association for the Advancement of Science, York, September 1844, pp. 311–390
[3] L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett. 45, 1096–1099 (1980),
http://dx.doi.org/10.1103/PhysRevLett.45.1095
[4] Y. Silberberg, Collapse of optical pulses, Opt. Lett. 15, 1282–1284 (1990),
http://dx.doi.org/10.1364/OL.15.001282
[5] M. Ablowitz, G. Biondini, and L.A. Ostrovsky, Optical solitons: Perspectives and applications, Chaos 10, 471–474 (2000),
http://dx.doi.org/10.1063/1.1310721
For a review on χ2 soltons see A.V. Buryak, P. Di Trapani, D.V. Skryabin, and S. Trillo, Optical solitons due to quadratic nonlinearities: From basic physics to futuristic applications, Phys. Rep. 370, 63–235 (2002),
http://dx.doi.org/10.1016/S0370-1573(02)00196-5
[6] Y.F. Chen, K. Beckwitt, F. Wise, and B.A. Malomed, Criteria for the experimental observation of multidimensional optical solitons in saturable media, Phys. Rev. E 70, 046610 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.046610
[7] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave Motion on the Basis of Maxwell's Equations (Dover, New York, 1955)
[8] J.A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941)
[9] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A 4, 651–654 (1987),
http://dx.doi.org/10.1364/JOSAA.4.000651
[10] J. Durnin, J.J. Miceli, and J.H. Eberly, Diffraction-free beams, Phys. Rev. Lett. 58, 1499–1502 (1987),
http://dx.doi.org/10.1103/PhysRevLett.58.1499
[11] D. McGloin and K. Dholakia, Bessel beams: Diffraction in a new light, Contemporary Physics 41, 15–28 (2005),
http://dx.doi.org/10.1080/0010751042000275259
[12] P. Saari and K. Reivelt, Evidence of X-shaped propagation-invariant localized light waves, Phys. Rev. Lett. 79, 4135–4138 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.4135
[13] M.A. Porras, Diffraction-free and dispersion-free pulsed beam propagation in dispersive medium, Opt. Lett. 26, 1364–1366 (2001),
http://dx.doi.org/10.1364/OL.26.001364
[14] S. Orlov, A. Piskarskas, and A. Stabinis, Localized optical subcycle pulses in dispersive media, Opt. Lett. 27, 2167–2169 (2002),
http://dx.doi.org/10.1364/OL.27.002167
[15] R. Grunwald, V. Kebbel, U. Neuman, M. Rini, E. Nibbering, M. Piché, G. Rousseau, and M. Fortin, Generation and characterization of spatially and temporally localized few-cycle optical wave packets, Phys. Rev. A 67, 063820 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.063820
[16] R.Y. Chiao, E. Garmire, and C.H. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13, 479–482 (1964),
http://dx.doi.org/10.1103/PhysRevLett.13.479
[17] L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303, 259–370 (1998),
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
[18] A.L. Gaeta, Collapsing light really shines, Science 301, 54–55 (2003),
http://dx.doi.org/10.1126/science.1083629
[19] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Opt. Lett. 20, 73–75 (1995),
http://dx.doi.org/10.1364/OL.20.000073
[20] J.V. Moloney, M. Kolesik, M. Mlejnek, and E.M. Wright, Femtosecond self-guided light strings, Chaos 10, 559–569 (2000),
http://dx.doi.org/10.1063/1.1288033
[21] A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, Infrared femtosecond light filaments in air: Simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002),
http://dx.doi.org/10.1364/JOSAB.19.001117
[22] W. Liu, S.A. Hosseini, Q. Luo, B. Ferland, S.L. Chin, O.G. Kosareva, N.A. Panov, and V.P. Kandidov, Experimental observation and simulations of the self-action of white light laser pulse propagating in air, New J. Phys. 6, 6.1–6.22 (2004),
http://dx.doi.org/10.1088/1367-2630/6/1/006
[23] S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, Self-guided propagation of ultrashort IR laser pulses in fused silica, Phys. Rev. Lett. 87, 213902 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.213902
[24] A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses, Phys. Rev. B 71, 125435 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.125435
[25] A. Brodeur, F.A. Ilkov, and S.L. Chin, Beam filamentation and the white light continuum divergence, Opt. Commun. 129, 193–198 (1996),
http://dx.doi.org/10.1016/0030-4018(96)00144-7
[26] A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius, Self-guided propagation of femtosecond light pulses in water, Opt. Lett. 28, 1269–1271 (2003),
http://dx.doi.org/10.1364/OL.28.001269
[27] W. Liu, S.L. Chin, O.G. Kosareva, I.S. Golubtsov, and V.P. Kandidov, Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol), Opt. Commun. 225, 193–209 (2003),
http://dx.doi.org/10.1016/j.optcom.2003.07.024
[28] A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, Nonlinear X-wave formation by femtosecond filamentation in water, Phys. Rev. E (submitted),
http://dx.doi.org/10.1103/PhysRevE.73.016608
[29] A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, Light filaments without self-channeling, Phys. Rev. Lett. 92, 253903 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.253903
[30] A. Dubietis, E. Kučinskas, G. Tamošauskas, E. Gaižauskas, M.A. Porras, and P. Di Trapani, Self-reconstruction of light filaments, Opt. Lett. 29, 2893–2895 (2004),
http://dx.doi.org/10.1364/OL.29.002893
[31] M. Kolesik and J.V. Moloney, Self-healing femtosecond light filaments, Opt. Lett. 29, 590–592 (2004),
http://dx.doi.org/10.1364/OL.29.000590
[32] W. Liu, J.-F. Gravel, F. Théberge, A. Becker, and S.L. Chin, Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air, Appl. Phys. B 80, 857–860 (2005),
http://dx.doi.org/10.1007/s00340-005-1805-6
[33] M.A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, Nonlinear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses, Phys. Rev. Lett. 93, 153902 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.153902
[34] G. Valiulis, J. Kilius, O. Jedrkiewicz, A. Bramati, S. Minardi, C. Conti, S. Trillo, A. Piskarskas, and P. Di Trapani, Space-time nonlinear compression and three-dimensional complex trapping in normal dispersion, in: Trends in optics and photonics, Vol. 57, postdeadline paper QPD10-1 (Optical Society of America, Washington DC, 2001),
http://dx.doi.org/10.1109/QELS.2001.962252
[35] C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Nonlinear electromagnetic X-waves, Phys. Rev. Lett. 90, 170406 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.170406
[36] P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, Spontaneously generated X-shaped light bullets, Phys. Rev. Lett. 91, 093904 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.093904
[37] O. Jedrkiewicz, J. Trull, G. Valiulis, A. Piskarskas, C. Conti, S. Trillo, and P. Di Trapani, Nonlinear X waves in second-harmonic generation: Experimental results, Phys. Rev. E 68, 026610 (2003),
http://dx.doi.org/10.1103/PhysRevE.68.026610
[38] J. Trull, O. Jedrkiewicz, P. Di Trapani, A. Matijošius, A. Varanavičius, G. Valiulis, R. Danielius, E. Kučinskas, and A. Piskarskas, Spatiotemporal three-dimensional mapping of nonlinear X waves, Phys. Rev. E 69, 026607 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.026607
[39] M.A.C. Potenza, S. Minardi, J. Trull, G. Blasi, D. Salerno, A. Varanavičius, A. Piskarskas, and P. Di Trapani, Three dimensional imaging of short pulses, Opt. Commun. 229, 381–390 (2004),
http://dx.doi.org/10.1016/j.optcom.2003.10.029
[40] M. Kolesik, E.M. Wright, and J.V. Moloney, Dynamic nonlinear X waves for femtosecond pulse propagation in water, Phys. Rev. Lett. 92, 253901 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.253901
[41] C. Day, Intense X-shaped pulses of light propagate without spreading in water and other dispersive media, Phys. Today 57(10), 25–27 (2004),
http://dx.doi.org/10.1063/1.1825261
[42] A. Matijošius, J. Trull, P. Di Trapani, A. Dubietis, R. Piskarskas, A. Varanavičius, and A. Piskarskas, Nonlinear space-time dynamics of ultrashort wave packets in water, Opt. Lett. 29, 1123–1125 (2004),
http://dx.doi.org/10.1364/OL.29.001123
[43] D. Faccio, P. Di Trapani, S. Minardi, A. Bramati, F. Bragheri, C. Liberale, V. Degiorgio, A. Dubietis, and A. Matijošius, Far-field spectral characterization of conical emission and filamentation in Kerr media, J. Opt. Soc. Am. B 22, 862–869 (2005),
http://dx.doi.org/10.1364/JOSAB.22.000862
[44] D. Faccio, A. Matijošius, A. Dubietis, R. Piskarskas, A. Varanavičius, E. Gaižauskas, A. Piskarskas, A. Couairon, and P. Di Trapani, Near- and far-field evolution of laser pulse filaments in Kerr media, Phys. Rev. E 72, 037601-1–4 (2005),
http://dx.doi.org/10.1103/PhysRevE.72.037601
[45] K.D. Moll and A.L. Gaeta, Role of dispersion in multiple-collapse dynamics, Opt. Lett. 29, 995–997 (2004),
http://dx.doi.org/10.1364/OL.29.000995
[46] L. Bergé and S. Skupin, Self-channeling of ultrashort laser pulses in materials with anomalous dispersion, Phys. Rev. E 71, 065601(R) (2005),
http://dx.doi.org/10.1103/PhysRevE.71.065601
[47] M.A. Porras, A. Parola, and P. Di Trapani, Nonlinear unbalanced O waves: Nonsolitary, conical light bullets in nonlinear dissipative media, J. Opt. Soc. Am. B 22, 1406–1413 (2005),
http://dx.doi.org/10.1364/JOSAB.22.001406
[48] R. Butkus, S. Orlov, A. Piskarskas, V. Smilgevičius, and A. Stabinis, Phase matching of optical X-waves in nonlinear crystals, Opt. Commun. 244, 411–421 (2005),
http://dx.doi.org/10.1016/j.optcom.2004.09.047
[49] S. Longhi and D. Janner, X-shaped waves in photonic crystals, Phys. Rev. B 70, 235123 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.235123
[50] S. Droulias, K. Hizanidis, J. Meier, and D.N. Christoduolides, X-waves in nonlinear normally dispersive waveguide arrays, Opt. Express 13, 1827–1832 (2005),
http://dx.doi.org/10.1364/OPEX.13.001827
[51] J. Kasparian, M. Rodriguez, G. Mejéan, J. Yu, R. Bourayou, S. Frey, Y.B. André, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, and L. Wöste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003),
http://dx.doi.org/10.1126/science.1085020
[52] M. Rodriguez, R. Bourayou, G. Mejéan, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, Kilometer-range nonlinear propagation of femtosecond laser pulses, Phys. Rev. E 69, 036607 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.036607
[53] H.R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, High-order harmonic generation and quasiphase matching in xenon using self guided femtosecond pulses, Phys. Rev. Lett. 81, 1611–1614 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.1611
[54] Q. Luo, S.A. Hosseini, and W. Liu, Lasing action in air induced by ultrafast laser filamentation, Opt. Photon. News 15(9), 44–47 (2004),
http://dx.doi.org/10.1364/OPN.15.000044
[55] X.M. Zhao, J.C. Diels, C.Y. Wang, and J.M. Elizondo, Femtosecond ultraviolet laser pulse induced lightning discharges in gasses, IEEE J. Quantum Electron. 31, 599–612 (1995),
http://dx.doi.org/10.1109/3.364418
[56] M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, Triggering and guiding megavolt discharges by use of laser-induced ionized filaments, Opt. Lett. 27, 772–774 (2002),
http://dx.doi.org/10.1364/OL.27.000772
[57] R. Ackermann, K. Stelmarczyk, P. Rohwetter, G. Mejéan, E. Salmon, J. Yu, J. Kasparian, G. Mechain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J.-P. Wolf, Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions, Appl. Phys. Lett. 85, 5781–5783 (2005),
http://dx.doi.org/10.1063/1.1829165
[58] V. Garcez-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature 419, 145–147 (2002),
http://dx.doi.org/10.1038/nature01007
[59] V. Garces-Chavez, D. Roskey, M.D. Summers, H. Melville, D. McGloin, E.M. Wright, and K. Dholakia, Optical levitation in a Bessel light beam, Appl. Phys. Lett. 85, 4001–4003 (2004),
http://dx.doi.org/10.1063/1.1814820
[60] J.Y. Ye, G. Chang, T.B. Norris, C. Tse, M.J. Zohdy, K.W. Hollman, M. O'Donnell, and J.R. Baker Jr, Trapping cavitation bubbles with a self-focused laser beam, Opt. Lett. 29, 2136–2138 (2004),
http://dx.doi.org/10.1364/OL.29.002136
[61] M. Erdelyi, Z.L. Horvath, G. Szabo, Zs. Bor, F.K. Tittel, J.R. Cavallaro, and M.C. Smayling, Generation of diffraction-free beams for applications in optical microlithography, J. Vac. Sci. Technol. B 15, 287–292 (1997),
http://dx.doi.org/10.1116/1.589280
[62] J. Amako, D. Sawaki, and E. Fujii, Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics, J. Opt. Soc. Am. B 20, 2562–2568 (2003),
http://dx.doi.org/10.1364/JOSAB.20.002562
[63] K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses, Opt. Lett. 26, 19–21 (2001),
http://dx.doi.org/10.1364/OL.26.000019
[64] P. Polesana, D. Faccio, P. Di Trapani, A. Dubietis, A. Piskarskas, A. Couairon, and M.A. Porras, High localization, focal depth and contrast by means of nonlinear Bessel beams, Opt. Express 13, 6160–6167 (2005),
http://dx.doi.org/10.1364/OPEX.13.006160
[65] T. Wulle and S. Herminghaus, Nonlinear optics of Bessel beams, Phys. Rev. Lett. 70, 1401–1403 (1993),
http://dx.doi.org/10.1103/PhysRevLett.70.1401
[66] A. Piskarskas, V. Smilgevičius, A. Stabinis, and V. Jarutis, Output patterns of optical parametric amplifiers and generators pumped by conical beams, J. Opt. A 1, 52–57 (1999),
http://dx.doi.org/10.1088/1464-4266/1/1/011
[67] S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov, Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (White Light Laser), J. Nonlinear Opt. Phys. Mat. 8, 121–146 (1999),
http://dx.doi.org/10.1142/S0218863599000096
[68] C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004),
http://dx.doi.org/10.1007/s00340-004-1650-z
[69] C. Conti and S. Trillo, Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice, Phys. Rev. Lett. 92, 120404 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.120404
[70] M. Landman, G. Papanicolaou, C. Sulem, P. Sulem, and X. Wang, Stability of isotropic self-similar dynamics for scalar-wave collapse, Phys. Rev. A 46, 7869–7876 (1992),
http://dx.doi.org/10.1103/PhysRevA.46.7869
[71] J. Lu and J.F. Greenleaf, Experimental verification of nondiffracting X waves, IEEE Trans. Ultrason. Ferroel. Freq. Control 39, 441–446 (1992),
http://dx.doi.org/10.1109/58.143178
[72] D. Mugnai, A. Ranfagni, and R. Ruggeri, Observation of superluminal behaviors in wave propagation, Phys. Rev. Lett. 84, 4830–4833 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.4830
[73] Z. Jiang and X.-C. Zhang, 2D measurement and spatiotemporal coupling of few-cycle THz pulses, Opt. Express 5, 243–248 (1999),
http://dx.doi.org/10.1364/OE.5.000243
[74] J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnquist, J. Saily, A. Hakli, J. Ala-Laurinaho, and A. Raisanen, Millimetre-wave Bessel beams using computer holograms, Electron. Lett. 37, 834–835 (2001),
http://dx.doi.org/10.1049/el:20010551
[75] L.M. Soroko, Mesooptics (World Scientific, Singapore, 1996)