[PDF]
http://dx.doi.org/10.3952/lithjphys.46103
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 79–84 (2006)
SURFACE CHARGE DECORATION
METHODS ∗
E. Montrimas and R. Rinkūnas
Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: ringaudas.rinkunas@ff.vu.lt
Received 30 June 2005
Charge distribution on layer surface is
determined by homogeneity of a layer. Surface charge can also be
used for information recording. Charge distribution in layers with
high surface potential is investigated by the method of layer
decoration in air with tungsten oxide. In such a case, round
particles of tungsten oxide from 1 to 10 μm in diameter
are formed. The larger the surface charge of a layer, the more
rounded are particles of tungsten oxide. In addition, surface
charge of a layer stimulates joining of decorating particles into
chains. Increase of tangential electric field causes increasingly
regular orientation of those chains in the direction of the field.
Layers with a lower surface potential are decorated in vacuum with
Se islets. This method makes it possible to measure layer surface
charge distribution with precision higher than 1 μm. If
the decorated layer is charged negatively, action of the surface
charge causes Se islets to form chains, whereas positive surface
charge causes a decrease of Se islets by a factor of 2 to 7 in
comparison with size of Se islets in areas without surface charge.
This effect can be used for information recording. Positive
surface charge of a layer is arranged in circular zones.
Keywords: surface charge, decoration, defect
PACS: 68.37.Lp, 68.55.Ac, 52.80.-s
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
SLUOKSNIO PAVIRŠINIO KRŪVIO
DEKORAVIMO METODAI
.E. Montrimas, R. Rinkūnas
Vilniaus universitetas, Vilnius, Lietuva
Krūvio pasiskirstymą sluoksnio paviršiuje lemia
sluoksnio vienalytiškumas. Sluoksnio vienalytiškumą galima
ištirti, užgarinant ant jo paviršiaus įvairias medžiagas, t. y.
dekoruojant sluoksnį. Esant aukštoms sluoksnio paviršinio
potencialo vertėms (apie 2000 V), krūvio pasiskirstymo vaizdas
išryškinamas, ant sluoksnio paviršiaus užgarinus volframo oksidą.
Ryškinimo metu susidaro nuo 1 iki 10 μm didumo volframo
oksido dalelės, kurios, didėjant paviršiniam krūviui, darosi vis
apvalesnės ir jungiasi išsišakojančiomis grandinėlėmis. Nustatyta,
kad elektrinio lauko stiprio tangentinis sandas orientuoja
grandinėles lauko kryptimi tuo stipriau, kuo šis laukas
stipresnis. Esant mažesniems sluoksnio paviršiniams potencialams
(šimtams voltų), paviršinio krūvio pasiskirstymo vaizdas
išryškinamas, ant sluoksnio vakuume užgarinus seleną. Nustatyta,
kad neigiamas paviršinis krūvis sukelia seleno salelių grandinėlių
susidarymą, o teigiamas krūvis mažina seleno salelių skersmenį ir
iš jų sukuria atskiras sritis. Toks sluoksnių tyrimo būdas leidžia
įvertinti krūvio pasiskirstymą sluoksnio paviršiuje 1 μm
tikslumu. Salelių formų kitimo reiškinys gali būti taikomas
optinei informacijai užrašyti.
References / Nuorodos
[1] B. Han, Z. Li, S. Pronkin, and T. Wandlowski, In situ ATR-SEIRAS
study of adsorption and phase formation of trimesic acid on Au
(111-25 nm) film electrodes, Can. J. Chem. 82(10), 1481–1494
(2004),
http://dx.doi.org/10.1139/v04-118
[2] M. Gleiche, L.F. Chi, and H. Fuchs, Molecular property related
silver decoration on fatty acid Langmuir–Blodgett monolayers, Thin
Solid Films 327–329(1–2), 268–272 (1998),
http://dx.doi.org/10.1016/S0040-6090(98)00642-7
[3] B.C. Satishkumar, E.M. Vogl, A. Govindaraj, and C.N.R. Rao, The
decoration of carbon nanotubes by metal nanoparticles, J. Phys. D 29(12),
3173–3176 (1996),
http://dx.doi.org/10.1088/0022-3727/29/12/037
[4] A. Berg, I. Brough, J.H. Evans, G. Lorimer, and A.R. Peaker,
Recombination-generation behaviour of decorated defects in silicon,
Semicond. Sci. Technol. 7(1A), A263–A268 (1992),
http://dx.doi.org/10.1088/0268-1242/7/1A/050
[5] V. Higgs, E.C. Lightowlers, G. Davies, F. Schaffler, and E.
Kasper, Photoluminescence from MBE Si grown at low temperatures;
donor bound excitons and decorated dislocations, Semicond. Sci.
Technol. 4(7), 593–598 (1989),
http://dx.doi.org/10.1088/0268-1242/4/7/019
[6] K. Beard, R. Durkee, and H. Ochs, Coalescence efficiency
measurements for minimally charged cloud drops, J. Atmos. Sci. 59(2),
233–243 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0233:CEMFMC>2.0.CO;2
[7] H. Yanada, N. Nishimura, and T. Imagawa, Acceleration of
coagulation of particles in oil utilizing an a.c. electric field,
Proc. IME 218(C3), 317–326 (2004),
http://dx.doi.org/10.1243/095440604322900444
[8] V.I. Gaidelis, N.N. Markevich, and E.A. Montrimas, in: Physical
Processes in Electrophotographic Layers of ZnO (Mintis,
Vilnius, 1968) pp. 113–128 [in Russian]
[9] J. Kaladė, Das axialsymmetrisches elektrostatisches Feld in den
dielektrischen Schichten, Lithuanian Phys. J. 13(4), 529–533
(1973)
[10] G. Schimmel, Techniques of Electron Microscopy (Mir,
Moscow, 1972)