[PDF]    http://dx.doi.org/10.3952/lithjphys.46103

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 79–84 (2006)


SURFACE CHARGE DECORATION METHODS
E. Montrimas and R. Rinkūnas
Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: ringaudas.rinkunas@ff.vu.lt

Received 30 June 2005

Charge distribution on layer surface is determined by homogeneity of a layer. Surface charge can also be used for information recording. Charge distribution in layers with high surface potential is investigated by the method of layer decoration in air with tungsten oxide. In such a case, round particles of tungsten oxide from 1 to 10 μm in diameter are formed. The larger the surface charge of a layer, the more rounded are particles of tungsten oxide. In addition, surface charge of a layer stimulates joining of decorating particles into chains. Increase of tangential electric field causes increasingly regular orientation of those chains in the direction of the field. Layers with a lower surface potential are decorated in vacuum with Se islets. This method makes it possible to measure layer surface charge distribution with precision higher than 1 μm. If the decorated layer is charged negatively, action of the surface charge causes Se islets to form chains, whereas positive surface charge causes a decrease of Se islets by a factor of 2 to 7 in comparison with size of Se islets in areas without surface charge. This effect can be used for information recording. Positive surface charge of a layer is arranged in circular zones.
Keywords: surface charge, decoration, defect
PACS: 68.37.Lp, 68.55.Ac, 52.80.-s
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


SLUOKSNIO PAVIRŠINIO KRŪVIO DEKORAVIMO METODAI
.E. Montrimas, R. Rinkūnas
Vilniaus universitetas, Vilnius, Lietuva

Krūvio pasiskirstymą sluoksnio paviršiuje lemia sluoksnio vienalytiškumas. Sluoksnio vienalytiškumą galima ištirti, užgarinant ant jo paviršiaus įvairias medžiagas, t. y. dekoruojant sluoksnį. Esant aukštoms sluoksnio paviršinio potencialo vertėms (apie 2000 V), krūvio pasiskirstymo vaizdas išryškinamas, ant sluoksnio paviršiaus užgarinus volframo oksidą. Ryškinimo metu susidaro nuo 1 iki 10 μm didumo volframo oksido dalelės, kurios, didėjant paviršiniam krūviui, darosi vis apvalesnės ir jungiasi išsišakojančiomis grandinėlėmis. Nustatyta, kad elektrinio lauko stiprio tangentinis sandas orientuoja grandinėles lauko kryptimi tuo stipriau, kuo šis laukas stipresnis. Esant mažesniems sluoksnio paviršiniams potencialams (šimtams voltų), paviršinio krūvio pasiskirstymo vaizdas išryškinamas, ant sluoksnio vakuume užgarinus seleną. Nustatyta, kad neigiamas paviršinis krūvis sukelia seleno salelių grandinėlių susidarymą, o teigiamas krūvis mažina seleno salelių skersmenį ir iš jų sukuria atskiras sritis. Toks sluoksnių tyrimo būdas leidžia įvertinti krūvio pasiskirstymą sluoksnio paviršiuje 1 μm tikslumu. Salelių formų kitimo reiškinys gali būti taikomas optinei informacijai užrašyti.


References / Nuorodos


[1] B. Han, Z. Li, S. Pronkin, and T. Wandlowski, In situ ATR-SEIRAS study of adsorption and phase formation of trimesic acid on Au (111-25 nm) film electrodes, Can. J. Chem. 82(10), 1481–1494 (2004),
http://dx.doi.org/10.1139/v04-118
[2] M. Gleiche, L.F. Chi, and H. Fuchs, Molecular property related silver decoration on fatty acid Langmuir–Blodgett monolayers, Thin Solid Films 327–329(1–2), 268–272 (1998),
http://dx.doi.org/10.1016/S0040-6090(98)00642-7
[3] B.C. Satishkumar, E.M. Vogl, A. Govindaraj, and C.N.R. Rao, The decoration of carbon nanotubes by metal nanoparticles, J. Phys. D 29(12), 3173–3176 (1996),
http://dx.doi.org/10.1088/0022-3727/29/12/037
[4] A. Berg, I. Brough, J.H. Evans, G. Lorimer, and A.R. Peaker, Recombination-generation behaviour of decorated defects in silicon, Semicond. Sci. Technol. 7(1A), A263–A268 (1992),
http://dx.doi.org/10.1088/0268-1242/7/1A/050
[5] V. Higgs, E.C. Lightowlers, G. Davies, F. Schaffler, and E. Kasper, Photoluminescence from MBE Si grown at low temperatures; donor bound excitons and decorated dislocations, Semicond. Sci. Technol. 4(7), 593–598 (1989),
http://dx.doi.org/10.1088/0268-1242/4/7/019
[6] K. Beard, R. Durkee, and H. Ochs, Coalescence efficiency measurements for minimally charged cloud drops, J. Atmos. Sci. 59(2), 233–243 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0233:CEMFMC>2.0.CO;2
[7] H. Yanada, N. Nishimura, and T. Imagawa, Acceleration of coagulation of particles in oil utilizing an a.c. electric field, Proc. IME 218(C3), 317–326 (2004),
http://dx.doi.org/10.1243/095440604322900444
[8] V.I. Gaidelis, N.N. Markevich, and E.A. Montrimas, in: Physical Processes in Electrophotographic Layers of ZnO (Mintis, Vilnius, 1968) pp. 113–128 [in Russian]
[9] J. Kaladė, Das axialsymmetrisches elektrostatisches Feld in den dielektrischen Schichten, Lithuanian Phys. J. 13(4), 529–533 (1973)
[10] G. Schimmel, Techniques of Electron Microscopy (Mir, Moscow, 1972)