[PDF]    http://dx.doi.org/10.3952/lithjphys.46107

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 109–115 (2006)


ANALYTICAL IDENTIFICATION OF HISTORICAL WRITING INKS – A NEW METHODOLOGICAL APPROACH
J. Senvaitienė, A. Beganskienė, L. Salickaitė-Bunikienė, and A. Kareiva
Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
E-mail: aivaras.kareiva@chf.vu.lt

Received 5 December 2005

A novel methodological approach has been developed for the qualitative determination of nature of historical writing inks. The identification of unknown historical writing ink was performed using FTIR, UV and visible spectroscopies and capillary electrophoresis. The infrared spectra of all samples were recorded using two different techniques (KBr pellet and ZnSe cell). The KBr method was used for the characterization of ink samples evaporated to dryness, while ZnSe cell techniques were used for the analysis of ink aqueous solutions or suspensions. It was demonstrated that the KBr method could be used for the determination of nature of the historical writing ink sample, however, the application of ZnSe cell technique for the identification of specific features was problematic. Characterization by UV and visible spectroscopies and capillary electrophoresis also revealed the characteristic features in the ink samples providing a possibility to determine the identity of historical writing ink regarding its chemical composition.
Keywords: historical writing inks, analytical characterization, qualitative analysis, FTIR spectroscopy, UV and visible spectroscopies, capillary electrophoresis
PACS: 82.80.-d, 81.05.-d


NAUJAS METODOLOGINIS PRINCIPAS SENOVINIŲ RAŠALŲ ANALIZINIAM IDENTIFIKAVIMUI
J. Senvaitienė, A. Beganskienė, L. Salickaitė-Bunikienė, A. Kareiva
Vilniaus universitetas, Vilnius, Lietuva

Sukurtas naujas kokybinio senovinių rašalų identifikavimo metodologinis principas. Šiam tikslui buvo panaudoti IR, UV ir regimosios spektroskopijų bei kapiliarinės elektroforezės metodai. IR spektroskopiniai tyrimai atlikti, naudojant KBr tabletes arba ZnSe celę. Nustatyta, kad IR spektroskopijos variantas su KBr leidžia identifikuoti įvairių sudėčių istorinius rašalus, tačiau ZnSe varianto panaudojimas šiems tikslams yra nelabai tinkamas. Pirmą kartą parodyta, kad UV ir regimosios spektroskopijų bei kapiliarinės elektroforezės metodai gali būti sėkmingai ir efektyviai pritaikomi nežinomos sudėties senovinio rašalo kokybinei sudėčiai įvertinti. Tyrimų rezultatai akivaizdžiai parodė, kad sukurtas metodologinis principas yra unikalus, greitas, paprastas ir patikimas. Nustatyta, kad tirtas nežinomas rašalas yra senovinis geležies galo riešutų rašalas.


References / Nuorodos


[1] A.N. Macinnes and A.R. Barron, Spectroscopic evaluation of the efficacy of two mass deacidification processes of paper, J. Mater. Chem. 2, 1049–1056 (1992),
http://dx.doi.org/10.1039/jm9920201049
[2] S. Fairbrass, Sticky problems for conservators of works of art on paper, Int. J. Adhes. Adhesiv. 15, 115–120 (1995),
http://dx.doi.org/10.1016/0143-7496(95)98747-A
[3] B. Havlinova, D. Babiakova, V. Brezova, M. Durovic, M. Novotna, and F. Belanyi, The stability of offset inks on paper upon ageing, Dyes Pigm. 54, 173–188 (2002),
http://dx.doi.org/10.1016/S0143-7208(02)00045-1
[4] I. Espadaler, M.C. Sistach, M. Cortina, E. Eljarrat, R. Alcaraz, J. Cabanas, and J. Rivera, Organic and inorganic components of manuscript inks, Anal. Quimica 91, 359–364 (1995)
[5] P. Calvini and A. Gorassini, The degrading action of iron and copper on paper. A FTIR-deconvolution analysis, Restaurator 23, 205–221 (2002),
http://dx.doi.org/10.1515/REST.2002.205
[6] P. Rudolph, F.J. Ligterink, J.L. Pedersoli Jr., M. van Bommel, J. Bos, H.A. Awiz, J.B.G.A. Havermans, H. Scholten, D. Schipper, and W. Kautek, Characterization of laser-treated paper, Appl. Phys. A 79, 181–186 (2004),
http://dx.doi.org/10.1007/s00339-004-2650-x
[7] V. Rouchon-Quillet, C. Remazeilles, J. Bernard, A. Wattiaux, and L. Fournes, The impact of gallic acid on iron gall ink corrosion, Appl. Phys. A 79, 389–392 (2004),
http://dx.doi.org/10.1007/s00339-004-2541-1
[8] B. Wagner, E. Bulska, B. Stahl, M. Heck, and H.M. Ortner, Analysis of Fe valence states in iron-gall inks from XVIth century manuscripts by Fe-57 Mossbauer spectroscopy, Anal. Chim. Acta 527, 195–201 (2004),
http://dx.doi.org/10.1016/j.aca.2004.04.011
[9] G. Banik, Mass deacidification technology in Germany and its quality control, Restaurator 26, 63–75 (2005),
http://dx.doi.org/10.1515/REST.2005.63
[10] T. Edwards, UK paper conservation courses: An overview, J. Soc. Archiv. 20, 49–60 (1999),
http://dx.doi.org/10.1080/003798199103721
[11] J.D. Mackenzie and E.P. Bescher, Physical properties of sol-gel coatings, J. Sol-Gel Sci. Technol. 19, 23–29 (2000),
http://dx.doi.org/10.1023/A:1008701903087
[12] J.G. Neevel, Phytate: A potential conservation agent for the treatment of ink corrosion caused by iron gall inks, Restaurator 16, 143–160 (1995),
http://dx.doi.org/10.1515/rest.1995.16.3.143
[13] J. Thompson, Manuscript Inks (The Caber Press, Portland, Oregon, 1996)
[14] C. Krekel, The chemistry of historical iron gall inks (1): Understanding the chemistry of writing inks used to prepare historical documents, Int. J. Foren. Docum. Exam. 12, 54–60 (1999)
[15] S. Margutti, G. Conio, P. Calvini, and E. Pedemonte, Hydrolytic and oxidative degradation of paper, Restaurator 22, 67–83 (2001),
http://dx.doi.org/10.1515/REST.2001.67
[16] L.M. Proniewicz, C. Paluszkiewicz, A. Weselucha-Birczynska, H. Majcherczyk, A. Baranski, and A. Konieczna, FT-IR and FT-Raman study of hydrothermally degradated cellulose, J. Mol. Struct. 596, 163–169 (2001),
http://dx.doi.org/10.1016/S0022-2860(01)00706-2
[17] J.R. Mansfield, M. Attas, C. Majzels, E. Cloutis, C. Collins, and H.H. Mantsch, Near infrared spectroscopy reflectance imaging: A new tool in art conservation, Vibr. Spectr. 28, 59–66 (2002).,
http://dx.doi.org/10.1016/S0924-2031(01)00145-X
[18] J. Kiuberis, R. Kazlauskas, L. Grabauskaite, S. Tautkus, and A. Kareiva, Scanning electron microscopy – a powerful tool for the characterization of materials. 2. Modified sol–gel chemistry approach to the conservation of paper, Environmental and Chem. Phys. 25, 81–85 (2003)
[19] J. Kolar, M. Strlic, M. Budnar, J. Malesic, V.S. Selih, and J. Simcic, Stabilisation of corrosive iron gall inks, Acta Chim. Slov. 50, 763–770 (2003)
[20] A. Zappala and C. De Stefani, Evaluation of the effectiveness of stabilization methods – Treatments by deacidification, trehalose, phytates on iron gall inks, Restaurator 26, 36–43 (2005),
http://dx.doi.org/10.1515/REST.2005.36
[21] J. Senvaitiene, I. Pakutinskiene, A. Beganskiene, S. Tautkus, R. Kazlauskas, and A. Kareiva, Destructive effects of paper conservation procedure on the writing iron gall ink – evidence from transmetalation reaction, Polish J. Chem. 79, 1575–1583 (2005)
[22] J. Kiuberis, S. Tautkus, R. Kazlauskas, I. Pakutinskiene, and A. Kareiva, Protective coating for paper: New development and analytical characterization, J. Cult. Herit. 6, 245–251 (2005),
http://dx.doi.org/10.1016/j.culher.2005.06.002
[23] P. Arpino, J.-P. Moreau, C. Oruezabal, and F. Flieder, Gas chromatographic-mass spectrometric analysis of tannin hydrolysates from the ink of ancient manuscripts (XIth to XVIth century), J. Chromat. A 134, 433–439 (1977),
http://dx.doi.org/10.1016/S0021-9673(00)88542-8
[24] V. Mosini, P. Calvini, G. Mattogno, and G. Righini, Derivative infrared spectroscopy and electron spectroscopy for chemical analysis of ancient paper documents, Cellul. Chem. Technol. 24, 263–272 (1990)
[25] P. Calvini, E. Franceschi, and D. Palazzi, Artificially induced slow-fire in sized papers: FTIR, TG, DTA and SEM analyses, Sci. Technol. Cult. Herit. 5, 1–11 (1996)
[26] P.J. Gibbs, K.R. Seddon, N.M. Brovenko, Y.A. Petrosyan, and M. Barnard, Analysis of ancient dyed Chinese papers by high-performance liquid chromatography, Anal. Chem. 69, 1965–1969 (1997),
http://dx.doi.org/10.1021/ac960279v
[27] G. Righini, A.L. Segre, G. Mattogno, C. Federici, and P.F. Munafo, An X-ray photoelectron spectroscopic study of ancient paper and its deterioration, Naturwissenschaften 85, 171–175 (1998),
http://dx.doi.org/10.1007/s001140050478
[28] B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H.M. Ortner, Topochemical investigation of ancient manuscripts, Fresenius J. Anal. Chem. 369, 674–679 (2001),
http://dx.doi.org/10.1007/s002160100750
[29] E. Bulska, B. Wagner, and M.G. Sawicki, Investigation of complexation and solid–liquid extraction of iron from paper by UV / VIS and atomic absorption spectrometry, Microchim. Acta 136, 61–66 (2001),
http://dx.doi.org/10.1007/s006040170068
[30] O. Hahn, W. Malzer, B. Kanngiesser, and B. Beckhoff, Characterization of iron–gall inks in historical manuscripts and music compositions using X-ray fluorescence spectrometry, X-ray Spectrom. 33, 234–239 (2004),
http://dx.doi.org/10.1002/xrs.677
[31] C. Marinach, M.-C. Papillon, and C. Pepe, Identification of binding media in works of art by gas chromatography-mass spectrometry, J. Cult. Herit. 5, 231–240 (2004),
http://dx.doi.org/10.1016/j.culher.2003.12.002
[32] M. Strlic, B. Pihlar, L. Mauko, J. Kolar, S. Hocevar, and B. Ogorevc, A new electrode for micro-determination of paper pH, Restaurator 26, 159–171 (2005),
http://dx.doi.org/10.1515/rest.2005.26.3.159
[33] G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, and L. Dei, Spectroscopic techniques in cultural heritage conservation: A survey, Appl. Spectr. Rev. 40, 187–228 (2005),
http://dx.doi.org/10.1081/ASR-200054370
[34] J. Senvaitiene, A. Beganskiene, and A. Kareiva, Spectroscopic evaluation and characterization of different historical writing inks, Vibr. Spectrosc. 37, 61–67 (2005),
http://dx.doi.org/10.1016/j.vibspec.2004.06.004