[PDF]
http://dx.doi.org/10.3952/lithjphys.46107
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 109–115 (2006)
ANALYTICAL IDENTIFICATION OF
HISTORICAL WRITING INKS – A NEW METHODOLOGICAL APPROACH
J. Senvaitienė, A. Beganskienė, L. Salickaitė-Bunikienė, and A.
Kareiva
Faculty of Chemistry, Vilnius University, Naugarduko 24,
LT-03225 Vilnius, Lithuania
E-mail: aivaras.kareiva@chf.vu.lt
Received 5 December 2005
A novel methodological approach has been
developed for the qualitative determination of nature of
historical writing inks. The identification of unknown historical
writing ink was performed using FTIR, UV and visible
spectroscopies and capillary electrophoresis. The infrared spectra
of all samples were recorded using two different techniques (KBr
pellet and ZnSe cell). The KBr method was used for the
characterization of ink samples evaporated to dryness, while ZnSe
cell techniques were used for the analysis of ink aqueous
solutions or suspensions. It was demonstrated that the KBr method
could be used for the determination of nature of the historical
writing ink sample, however, the application of ZnSe cell
technique for the identification of specific features was
problematic. Characterization by UV and visible spectroscopies and
capillary electrophoresis also revealed the characteristic
features in the ink samples providing a possibility to determine
the identity of historical writing ink regarding its chemical
composition.
Keywords: historical writing inks, analytical
characterization, qualitative analysis, FTIR spectroscopy, UV and
visible spectroscopies, capillary electrophoresis
PACS: 82.80.-d, 81.05.-d
NAUJAS METODOLOGINIS PRINCIPAS
SENOVINIŲ RAŠALŲ ANALIZINIAM IDENTIFIKAVIMUI
J. Senvaitienė, A. Beganskienė, L. Salickaitė-Bunikienė, A.
Kareiva
Vilniaus universitetas, Vilnius, Lietuva
Sukurtas naujas kokybinio senovinių rašalų
identifikavimo metodologinis principas. Šiam tikslui buvo
panaudoti IR, UV ir regimosios spektroskopijų bei kapiliarinės
elektroforezės metodai. IR spektroskopiniai tyrimai atlikti,
naudojant KBr tabletes arba ZnSe celę. Nustatyta, kad IR
spektroskopijos variantas su KBr leidžia identifikuoti įvairių
sudėčių istorinius rašalus, tačiau ZnSe varianto panaudojimas
šiems tikslams yra nelabai tinkamas. Pirmą kartą parodyta, kad UV
ir regimosios spektroskopijų bei kapiliarinės elektroforezės
metodai gali būti sėkmingai ir efektyviai pritaikomi nežinomos
sudėties senovinio rašalo kokybinei sudėčiai įvertinti. Tyrimų
rezultatai akivaizdžiai parodė, kad sukurtas metodologinis
principas yra unikalus, greitas, paprastas ir patikimas.
Nustatyta, kad tirtas nežinomas rašalas yra senovinis geležies
galo riešutų rašalas.
References / Nuorodos
[1] A.N. Macinnes and A.R. Barron, Spectroscopic evaluation of the
efficacy of two mass deacidification processes of paper, J. Mater.
Chem. 2, 1049–1056 (1992),
http://dx.doi.org/10.1039/jm9920201049
[2] S. Fairbrass, Sticky problems for conservators of works of art
on paper, Int. J. Adhes. Adhesiv. 15, 115–120 (1995),
http://dx.doi.org/10.1016/0143-7496(95)98747-A
[3] B. Havlinova, D. Babiakova, V. Brezova, M. Durovic, M. Novotna,
and F. Belanyi, The stability of offset inks on paper upon ageing,
Dyes Pigm. 54, 173–188 (2002),
http://dx.doi.org/10.1016/S0143-7208(02)00045-1
[4] I. Espadaler, M.C. Sistach, M. Cortina, E. Eljarrat, R. Alcaraz,
J. Cabanas, and J. Rivera, Organic and inorganic components of
manuscript inks, Anal. Quimica 91, 359–364 (1995)
[5] P. Calvini and A. Gorassini, The degrading action of iron and
copper on paper. A FTIR-deconvolution analysis, Restaurator 23,
205–221 (2002),
http://dx.doi.org/10.1515/REST.2002.205
[6] P. Rudolph, F.J. Ligterink, J.L. Pedersoli Jr., M. van Bommel,
J. Bos, H.A. Awiz, J.B.G.A. Havermans, H. Scholten, D. Schipper, and
W. Kautek, Characterization of laser-treated paper, Appl. Phys. A 79,
181–186 (2004),
http://dx.doi.org/10.1007/s00339-004-2650-x
[7] V. Rouchon-Quillet, C. Remazeilles, J. Bernard, A. Wattiaux, and
L. Fournes, The impact of gallic acid on iron gall ink corrosion,
Appl. Phys. A 79, 389–392 (2004),
http://dx.doi.org/10.1007/s00339-004-2541-1
[8] B. Wagner, E. Bulska, B. Stahl, M. Heck, and H.M. Ortner,
Analysis of Fe valence states in iron-gall inks from XVIth century
manuscripts by Fe-57 Mossbauer spectroscopy, Anal. Chim. Acta 527,
195–201 (2004),
http://dx.doi.org/10.1016/j.aca.2004.04.011
[9] G. Banik, Mass deacidification technology in Germany and its
quality control, Restaurator 26, 63–75 (2005),
http://dx.doi.org/10.1515/REST.2005.63
[10] T. Edwards, UK paper conservation courses: An overview, J. Soc.
Archiv. 20, 49–60 (1999),
http://dx.doi.org/10.1080/003798199103721
[11] J.D. Mackenzie and E.P. Bescher, Physical properties of sol-gel
coatings, J. Sol-Gel Sci. Technol. 19, 23–29 (2000),
http://dx.doi.org/10.1023/A:1008701903087
[12] J.G. Neevel, Phytate: A potential conservation agent for the
treatment of ink corrosion caused by iron gall inks, Restaurator 16,
143–160 (1995),
http://dx.doi.org/10.1515/rest.1995.16.3.143
[13] J. Thompson, Manuscript Inks (The Caber Press,
Portland, Oregon, 1996)
[14] C. Krekel, The chemistry of historical iron gall inks (1):
Understanding the chemistry of writing inks used to prepare
historical documents, Int. J. Foren. Docum. Exam. 12, 54–60
(1999)
[15] S. Margutti, G. Conio, P. Calvini, and E. Pedemonte, Hydrolytic
and oxidative degradation of paper, Restaurator 22, 67–83
(2001),
http://dx.doi.org/10.1515/REST.2001.67
[16] L.M. Proniewicz, C. Paluszkiewicz, A. Weselucha-Birczynska, H.
Majcherczyk, A. Baranski, and A. Konieczna, FT-IR and FT-Raman study
of hydrothermally degradated cellulose, J. Mol. Struct. 596,
163–169 (2001),
http://dx.doi.org/10.1016/S0022-2860(01)00706-2
[17] J.R. Mansfield, M. Attas, C. Majzels, E. Cloutis, C. Collins,
and H.H. Mantsch, Near infrared spectroscopy reflectance imaging: A
new tool in art conservation, Vibr. Spectr. 28, 59–66
(2002).,
http://dx.doi.org/10.1016/S0924-2031(01)00145-X
[18] J. Kiuberis, R. Kazlauskas, L. Grabauskaite, S. Tautkus, and A.
Kareiva, Scanning electron microscopy – a powerful tool for the
characterization of materials. 2. Modified sol–gel chemistry
approach to the conservation of paper, Environmental and Chem. Phys.
25, 81–85 (2003)
[19] J. Kolar, M. Strlic, M. Budnar, J. Malesic, V.S. Selih, and J.
Simcic, Stabilisation of corrosive iron gall inks, Acta Chim. Slov.
50, 763–770 (2003)
[20] A. Zappala and C. De Stefani, Evaluation of the effectiveness
of stabilization methods – Treatments by deacidification, trehalose,
phytates on iron gall inks, Restaurator 26, 36–43 (2005),
http://dx.doi.org/10.1515/REST.2005.36
[21] J. Senvaitiene, I. Pakutinskiene, A. Beganskiene, S. Tautkus,
R. Kazlauskas, and A. Kareiva, Destructive effects of paper
conservation procedure on the writing iron gall ink – evidence from
transmetalation reaction, Polish J. Chem. 79, 1575–1583
(2005)
[22] J. Kiuberis, S. Tautkus, R. Kazlauskas, I. Pakutinskiene, and
A. Kareiva, Protective coating for paper: New development and
analytical characterization, J. Cult. Herit. 6, 245–251
(2005),
http://dx.doi.org/10.1016/j.culher.2005.06.002
[23] P. Arpino, J.-P. Moreau, C. Oruezabal, and F. Flieder, Gas
chromatographic-mass spectrometric analysis of tannin hydrolysates
from the ink of ancient manuscripts (XIth to XVIth century), J.
Chromat. A 134, 433–439 (1977),
http://dx.doi.org/10.1016/S0021-9673(00)88542-8
[24] V. Mosini, P. Calvini, G. Mattogno, and G. Righini, Derivative
infrared spectroscopy and electron spectroscopy for chemical
analysis of ancient paper documents, Cellul. Chem. Technol. 24,
263–272 (1990)
[25] P. Calvini, E. Franceschi, and D. Palazzi, Artificially induced
slow-fire in sized papers: FTIR, TG, DTA and SEM analyses, Sci.
Technol. Cult. Herit. 5, 1–11 (1996)
[26] P.J. Gibbs, K.R. Seddon, N.M. Brovenko, Y.A. Petrosyan, and M.
Barnard, Analysis of ancient dyed Chinese papers by high-performance
liquid chromatography, Anal. Chem. 69, 1965–1969 (1997),
http://dx.doi.org/10.1021/ac960279v
[27] G. Righini, A.L. Segre, G. Mattogno, C. Federici, and P.F.
Munafo, An X-ray photoelectron spectroscopic study of ancient paper
and its deterioration, Naturwissenschaften 85, 171–175
(1998),
http://dx.doi.org/10.1007/s001140050478
[28] B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H.M. Ortner,
Topochemical investigation of ancient manuscripts, Fresenius J.
Anal. Chem. 369, 674–679 (2001),
http://dx.doi.org/10.1007/s002160100750
[29] E. Bulska, B. Wagner, and M.G. Sawicki, Investigation of
complexation and solid–liquid extraction of iron from paper by UV /
VIS and atomic absorption spectrometry, Microchim. Acta 136,
61–66 (2001),
http://dx.doi.org/10.1007/s006040170068
[30] O. Hahn, W. Malzer, B. Kanngiesser, and B. Beckhoff,
Characterization of iron–gall inks in historical manuscripts and
music compositions using X-ray fluorescence spectrometry, X-ray
Spectrom. 33, 234–239 (2004),
http://dx.doi.org/10.1002/xrs.677
[31] C. Marinach, M.-C. Papillon, and C. Pepe, Identification of
binding media in works of art by gas chromatography-mass
spectrometry, J. Cult. Herit. 5, 231–240 (2004),
http://dx.doi.org/10.1016/j.culher.2003.12.002
[32] M. Strlic, B. Pihlar, L. Mauko, J. Kolar, S. Hocevar, and B.
Ogorevc, A new electrode for micro-determination of paper pH,
Restaurator 26, 159–171 (2005),
http://dx.doi.org/10.1515/rest.2005.26.3.159
[33] G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, and L. Dei,
Spectroscopic techniques in cultural heritage conservation: A
survey, Appl. Spectr. Rev. 40, 187–228 (2005),
http://dx.doi.org/10.1081/ASR-200054370
[34] J. Senvaitiene, A. Beganskiene, and A. Kareiva, Spectroscopic
evaluation and characterization of different historical writing
inks, Vibr. Spectrosc. 37, 61–67 (2005),
http://dx.doi.org/10.1016/j.vibspec.2004.06.004