[PDF]    http://dx.doi.org/10.3952/lithjphys.46109

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 53–61 (2006)


PHOTO- AND ELECTRO-REFLECTANCE STUDY OF δ-DOPED GaAs / AlAs MULTIPLE QUANTUM WELLS
J. Kavaliauskasa, G. Krivaitėa, B. Čechavičiusa, A. Galickasa, G. Valušisa, D. Seliutaa, M.P. Halsallb, M.J. Steerc, and P. Harrisond
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: jk@pfi.lt
bDepartment of Electronics and Electrical Engineering, University of Manchester, P.O.B. 88, Manchester M60 1QD, UK
cDepartment of Electronic and Electrical Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, UK
dInstitute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

Received 12 October 2005

We present photoreflectance (PR) and contactless electroreflectance (CER) study of beryllium δ-doped GaAs / AlAs multiple quantum wells (MQWs) with well widths ranging from 3 to 20 nm and doping densities from 2·1010 to 2.5·1012 cm−2. Surface electric field strength as well as its direction in MQW structures have been evaluated from PR and CER measurements. PR and CER spectra of heavily doped QWs were found to be more complicated than those of slightly doped ones. The interpretation of spectral features was performed on the basis of their dependence on the optical bias and from comparison with calculations of electronic structure and optical transitions under electric field. Modulation spectra of slightly doped samples were explained by symmetry allowed excitonic transitions while additional features in spectra of heavily-doped samples were related to symmetry forbidden transitions coming into play due to the internal electric field. The light interference and free carrier effects in modulation spectra are considered as well.
Keywords: δ-doped GaAs / AlAs multiple quantum wells, electroreflectance, photoreflectance
PACS: 78.67.De, 73.21.Fg, 78.55.Cr


δ LEGIRUOTŲ GaAs / AlAs KVANTINIŲ DUOBIŲ FOTOATSPINDŽIO IR ELEKTRINIO ATSPINDŽIO SPEKTRŲ TYRIMAI
.J. Kavaliauskasa, G. Krivaitėa, B. Čechavičiusa, A. Galickasa, G. Valušisa, D. Seliutaa, M.P. Halsallb, M.J. Steerc, P. Harrisond
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bMančesterio universitetas, Mančesteris, Jungtinė Karalystė
cŠefildo universitetas, Šefildas, Jungtinė Karalystė
dLydso universitetas, Lydsas, Jungtinė Karalystė

Priemaišinių lygmenų δ legiruotose kvantinėse duobėse inžinerija atveria naujų galimybių kurti terahercinių bangų emiterius bei detektorius. Nanodarinių tyrimas nesąlytiniais optiniais metodais yra svarbus, norint suprasti tokių prietaisų veikimo ypatumus. Pasitelkus fotoatspindžio ir elektrinio atspindžio spektroskopijos metodus, buvo tiriama beriliu δ legiruotų (2·1010 – 2,5·1012 cm−2) GaAs / AlAs (3–20 nm / 5 nm) kvantinių duobių darinių elektroninė sandara ir legiravimo poveikis eksitoniniams optiniams šuoliams bei vidiniams elektriniams laukams.
Išanalizavus moduliacinių atspindžio spektrų linijų formą bei apskaičiavus energijos lygmenis kvantinėse duobėse, pastebėtos optinių spektrų smailės buvo susietos su leistinais bei draustinais eksitoniniais šuoliais. Optinių smailių interpretacija buvo patvirtinta, ištyrus jų energijų bei intensyvumų verčių priklausomybes nuo vidinio elektrinio lauko stiprio. Nustatyta, jog silpnai legiruotų bandinių spektruose vyrauja leistini optiniai šuoliai, o stipriai legiruotiems bandiniams yra būdingi ir draustini optiniai šuoliai, kurių intensyvumas stiprėja, stiprėjant elektriniam laukui. Paaiškinta, kad fotoatspindžio ir elektrinio atspindžio signalų prigimtis beriliu δ legiruotų GaAs / AlAs kvantinių duobių dariniuose priklauso nuo vidinio elektrinio lauko moduliacijos. Eksperimentiškai nustatytas šio lauko stipris bei kryptis bandiniuose.
Taip pat aptarta šviesos interferencijos ir laisvųjų krūvininkų įtaka elektromoduliaciniams spektrams.


References / Nuorodos


[1] P. Harrison, M.P. Halsall, and W.-M. Zheng, Quantum-confined impurities as single-electron quantum dots: Application in terahertz emitters, Mater. Sci. Forum 384–385, 165–172 (2002),
http://dx.doi.org/10.4028/www.scientific.net/MSF.384-385.165
[2] P. Harrison and R.W. Kelsall, Population inversion in optically pumped asymmetric quantum well lasers, J. Appl. Phys. 81(11), 7135–7140 (1997),
http://dx.doi.org/10.1063/1.365310
[3] M.P. Halsall, P. Harrison, J.-P. Wells, I.V. Bradley, and H. Pellemans, Picosecond far-infrared studies of intra-acceptor dynamics in bulk GaAs and δ-doped AlAs / GaAs quantum wells, Phys. Rev. B 63(15), 155314–155318 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.155314
[4] W.M. Zheng, M.P. Halsall, P. Harmer, P. Harrison, and M.J. Steer, Acceptor binding energy in δ-doped GaAs / AlAs multiple-quantum wells, J. Appl. Phys. 92(10), 6039–6042 (2002),
http://dx.doi.org/10.1063/1.1516872
[5] W.M. Zheng, M.P. Halsall, P. Harrison, J.-P.R. Wells, I.V. Bradley, and M.J. Steer, Effect of quantum-well confinement on acceptor state lifetime in δ-doped GaAs / AlAs multiple quantum wells, Appl. Phys. Lett. 83(18), 3719–3721 (2003),
http://dx.doi.org/10.1063/1.1623950
[6] W.M. Zheng, M.P. Halsall, P. Harmer, P. Harrison, and M.J. Steer, Effect of quantum confinement on shallow acceptor transitions in δ-doped GaAs / AlAs multiple-quantum wells, Appl. Phys. Lett. 84(5), 735–737 (2004),
http://dx.doi.org/10.1063/1.1644912
[7] O.J. Glembocki and B.V. Shanabrook, Photoreflectance spectroscopy of microstructures, in: Semiconductors and Semimetals, Volume 36, eds. D.G. Seiler and C.L. Littler (Academic Press, San Diego, 1992) pp. 221–292,
http://dx.doi.org/10.1016/S0080-8784(08)62901-4
[8] F.H. Pollak and H. Shen, Modulation spectroscopy of semiconductors: Bulk / thin film, microstructures, surfaces / interfaces and devices, Mater. Sci. Eng. R 10(7–8), 275–374 (1993),
http://dx.doi.org/10.1016/0927-796X(93)90004-M
[9] J. Misiewicz, P. Sitarek, G. Sęk, and R. Kudrawiec, Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy, Mater. Sci. (Poland) 21(3), 263–320 (2003),
[PDF]
[10] Y.S. Huang and F.H. Pollak, Non-destructive, room temperature characterization of wafer-sized III-V semiconductor device structures using contactless electromodulation and wavelength-modulated surface photovoltage spectroscopy, Phys. Status Solidi A 202(7), 1193–1207 (2005),
http://dx.doi.org/10.1002/pssa.200460900
[11] B. Čechavičius, J. Kavaliauskas, G. Krivaitė, D. Seliuta, G. Valušis, M.P. Halsall, M.J. Steer, and P. Harrison, Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs / AlAs multiple quantum wells, J. Appl. Phys. 98(2), 023508(8) (2005),
http://dx.doi.org/10.1063/1.1978970
[12] B. Čechavičius, J. Kavaliauskas, G. Krivaitė, D. Seliuta, E. Širmulis, J. Devenson, G. Valušis, M.P. Halsall, M.J. Steer, and P. Harrison, Optical and terahertz characterization of Be-doped GaAs / AlAs multiple quantum wells, Acta Phys. Pol. A 107(2), 328–332 (2005).
http://dx.doi.org/10.12693/APhysPolA.107.328
[13] S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981)
[14] D.E. Aspnes, Third-derivative modulation spectroscopy with low-field electroreflectance, Surf. Sci. 37, 418–442 (1973),
http://dx.doi.org/10.1016/0039-6028(73)90337-3
[15] B.V. Shanabrook, O.J. Glembocki, and W.T. Beard, Photoreflectance modulation mechanism in GaAs / AlxGa1−xAs multiple quantum wells, Phys. Rev. B 35(5), 2540–2543 (1987),
http://dx.doi.org/10.1103/PhysRevB.35.2540
[16] X. Yin, X. Guo, F.H. Pollak, G.D. Pettit, J.M. Woodal, T.P. Chin, and C.W. Tu, Nature of band bending at semiconductor surface by contactless electroreflectance, Appl. Phys. Lett. 60(11), 1336–1338 (1992),
http://dx.doi.org/10.1063/1.107335
[17] D.E. Aspnes and A.A. Studna, Schottky-barrier electroreflectance: Application to GaAs, Phys. Rev. B 7(10), 4605–4625 (1973),
http://dx.doi.org/10.1103/PhysRevB.7.4605
[18] O. Mayrock, H.-J. Wünsche, and F. Henneberger, Polarization charge screening and indium surface segregation in (In,Ga)N / GaN single and multiple quantum wells, Phys. Rev. B 62(24), 16870–16880 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.16870
[19] A.J. Shields and P.C. Klipstein, Line-shape model for the modulated reflectance of multiple quantum wells, Phys Rev. B 43(11), 9118–9125 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.9118
[20] K. Satzke, G. Weiser, W. Stolz, and K. Ploog, Optical study of electronic states of In0.53Ga0.57As / In0.52Al0.48As quantum wells in high electric fields, Phys. Rev. B 43(3), 2263–2271 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.2263
[21] R. Kudrawiec, G. Sęk, K. Ryczko, J. Misiewicz, and J.C. Harmand, Photoreflectance investigations of oscillator
strength and broadening of optical transitions for GaAsSb–GaInAs / GaAs bilayer quantum wells, Appl. Phys. Lett. 84(18), 3453–3455 (2004),
http://dx.doi.org/10.1063/1.1737065
[22] S.L. Mioc, J.W. Garland, and B.R. Bennet, Charge trapping and built-in field studies in electroreflectance of a UN+ GaAs structure, Semicond. Sci. Technol. 11(4), 521–524 (1996),
http://dx.doi.org/10.1088/0268-1242/11/4/010
[23] B. Jonsson and S.T. Eng, Solving the Shrödinger equation in arbitrary quantum well profiles using the transfer matrix method, IEEE J. Quantum Electron. 26(11), 2025–2035 (1990),
http://dx.doi.org/10.1109/3.62122
[24] J. Kortus and J. Monecke, Formation of subbands in δ-doped semiconductors, Phys. Rev. B 49(24), 17216–17223 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.17216