[PDF]
http://dx.doi.org/10.3952/lithjphys.46109
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 53–61 (2006)
PHOTO- AND ELECTRO-REFLECTANCE
STUDY OF δ-DOPED GaAs / AlAs MULTIPLE QUANTUM WELLS
J. Kavaliauskasa, G. Krivaitėa, B.
Čechavičiusa, A. Galickasa, G. Valušisa,
D. Seliutaa, M.P. Halsallb, M.J. Steerc,
and P. Harrisond
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: jk@pfi.lt
bDepartment of Electronics and Electrical
Engineering, University of Manchester, P.O.B. 88, Manchester M60
1QD, UK
cDepartment of Electronic and Electrical
Engineering, University of Sheffield, Mappin St, Sheffield S1
3JD, UK
dInstitute of Microwaves and Photonics, School
of Electronic and Electrical Engineering, University of Leeds,
Leeds LS2 9JT, UK
Received 12 October 2005
We present photoreflectance (PR) and
contactless electroreflectance (CER) study of beryllium δ-doped
GaAs / AlAs multiple quantum wells (MQWs) with well widths ranging
from 3 to 20 nm and doping densities from 2·1010 to
2.5·1012 cm−2. Surface electric field
strength as well as its direction in MQW structures have been
evaluated from PR and CER measurements. PR and CER spectra of
heavily doped QWs were found to be more complicated than those of
slightly doped ones. The interpretation of spectral features was
performed on the basis of their dependence on the optical bias and
from comparison with calculations of electronic structure and
optical transitions under electric field. Modulation spectra of
slightly doped samples were explained by symmetry allowed
excitonic transitions while additional features in spectra of
heavily-doped samples were related to symmetry forbidden
transitions coming into play due to the internal electric field.
The light interference and free carrier effects in modulation
spectra are considered as well.
Keywords: δ-doped GaAs / AlAs multiple quantum wells,
electroreflectance, photoreflectance
PACS: 78.67.De, 73.21.Fg, 78.55.Cr
δ LEGIRUOTŲ GaAs / AlAs
KVANTINIŲ DUOBIŲ FOTOATSPINDŽIO IR ELEKTRINIO ATSPINDŽIO SPEKTRŲ
TYRIMAI
.J. Kavaliauskasa, G. Krivaitėa, B.
Čechavičiusa, A. Galickasa, G. Valušisa,
D. Seliutaa, M.P. Halsallb, M.J. Steerc,
P. Harrisond
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bMančesterio universitetas, Mančesteris,
Jungtinė Karalystė
cŠefildo universitetas, Šefildas, Jungtinė
Karalystė
dLydso universitetas, Lydsas, Jungtinė Karalystė
Priemaišinių lygmenų δ legiruotose
kvantinėse duobėse inžinerija atveria naujų galimybių kurti
terahercinių bangų emiterius bei detektorius. Nanodarinių tyrimas
nesąlytiniais optiniais metodais yra svarbus, norint suprasti
tokių prietaisų veikimo ypatumus. Pasitelkus fotoatspindžio ir
elektrinio atspindžio spektroskopijos metodus, buvo tiriama
beriliu δ legiruotų (2·1010 – 2,5·1012 cm−2)
GaAs / AlAs (3–20 nm / 5 nm) kvantinių duobių darinių elektroninė
sandara ir legiravimo poveikis eksitoniniams optiniams šuoliams
bei vidiniams elektriniams laukams.
Išanalizavus moduliacinių atspindžio spektrų linijų formą bei
apskaičiavus energijos lygmenis kvantinėse duobėse, pastebėtos
optinių spektrų smailės buvo susietos su leistinais bei
draustinais eksitoniniais šuoliais. Optinių smailių interpretacija
buvo patvirtinta, ištyrus jų energijų bei intensyvumų verčių
priklausomybes nuo vidinio elektrinio lauko stiprio. Nustatyta,
jog silpnai legiruotų bandinių spektruose vyrauja leistini
optiniai šuoliai, o stipriai legiruotiems bandiniams yra būdingi
ir draustini optiniai šuoliai, kurių intensyvumas stiprėja,
stiprėjant elektriniam laukui. Paaiškinta, kad fotoatspindžio ir
elektrinio atspindžio signalų prigimtis beriliu δ
legiruotų GaAs / AlAs kvantinių duobių dariniuose priklauso nuo
vidinio elektrinio lauko moduliacijos. Eksperimentiškai nustatytas
šio lauko stipris bei kryptis bandiniuose.
Taip pat aptarta šviesos interferencijos ir laisvųjų krūvininkų
įtaka elektromoduliaciniams spektrams.
References / Nuorodos
[1] P. Harrison, M.P. Halsall, and W.-M. Zheng, Quantum-confined
impurities as single-electron quantum dots: Application in terahertz
emitters, Mater. Sci. Forum 384–385, 165–172 (2002),
http://dx.doi.org/10.4028/www.scientific.net/MSF.384-385.165
[2] P. Harrison and R.W. Kelsall, Population inversion in optically
pumped asymmetric quantum well lasers, J. Appl. Phys. 81(11),
7135–7140 (1997),
http://dx.doi.org/10.1063/1.365310
[3] M.P. Halsall, P. Harrison, J.-P. Wells, I.V. Bradley, and H.
Pellemans, Picosecond far-infrared studies of intra-acceptor
dynamics in bulk GaAs and δ-doped AlAs / GaAs quantum wells,
Phys. Rev. B 63(15), 155314–155318 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.155314
[4] W.M. Zheng, M.P. Halsall, P. Harmer, P. Harrison, and M.J.
Steer, Acceptor binding energy in δ-doped GaAs / AlAs
multiple-quantum wells, J. Appl. Phys. 92(10), 6039–6042
(2002),
http://dx.doi.org/10.1063/1.1516872
[5] W.M. Zheng, M.P. Halsall, P. Harrison, J.-P.R. Wells, I.V.
Bradley, and M.J. Steer, Effect of quantum-well confinement on
acceptor state lifetime in δ-doped GaAs / AlAs multiple
quantum wells, Appl. Phys. Lett. 83(18), 3719–3721 (2003),
http://dx.doi.org/10.1063/1.1623950
[6] W.M. Zheng, M.P. Halsall, P. Harmer, P. Harrison, and M.J.
Steer, Effect of quantum confinement on shallow acceptor transitions
in δ-doped GaAs / AlAs multiple-quantum wells, Appl. Phys.
Lett. 84(5), 735–737 (2004),
http://dx.doi.org/10.1063/1.1644912
[7] O.J. Glembocki and B.V. Shanabrook, Photoreflectance
spectroscopy of microstructures, in: Semiconductors and
Semimetals, Volume 36, eds. D.G. Seiler and C.L. Littler
(Academic Press, San Diego, 1992) pp. 221–292,
http://dx.doi.org/10.1016/S0080-8784(08)62901-4
[8] F.H. Pollak and H. Shen, Modulation spectroscopy of
semiconductors: Bulk / thin film, microstructures, surfaces /
interfaces and devices, Mater. Sci. Eng. R 10(7–8), 275–374
(1993),
http://dx.doi.org/10.1016/0927-796X(93)90004-M
[9] J. Misiewicz, P. Sitarek, G. Sęk, and R. Kudrawiec,
Semiconductor heterostructures and device structures investigated by
photoreflectance spectroscopy, Mater. Sci. (Poland) 21(3),
263–320 (2003),
[PDF]
[10] Y.S. Huang and F.H. Pollak, Non-destructive, room temperature
characterization of wafer-sized III-V semiconductor device
structures using contactless electromodulation and
wavelength-modulated surface photovoltage spectroscopy, Phys. Status
Solidi A 202(7), 1193–1207 (2005),
http://dx.doi.org/10.1002/pssa.200460900
[11] B. Čechavičius, J. Kavaliauskas, G. Krivaitė, D. Seliuta, G.
Valušis, M.P. Halsall, M.J. Steer, and P. Harrison, Photoreflectance
and surface photovoltage spectroscopy of beryllium-doped GaAs / AlAs
multiple quantum wells, J. Appl. Phys. 98(2), 023508(8)
(2005),
http://dx.doi.org/10.1063/1.1978970
[12] B. Čechavičius, J. Kavaliauskas, G. Krivaitė, D. Seliuta, E.
Širmulis, J. Devenson, G. Valušis, M.P. Halsall, M.J. Steer, and P.
Harrison, Optical and terahertz characterization of Be-doped GaAs /
AlAs multiple quantum wells, Acta Phys. Pol. A 107(2), 328–332
(2005).
http://dx.doi.org/10.12693/APhysPolA.107.328
[13] S.M. Sze, Physics of Semiconductor Devices, 2nd ed.
(Wiley, New York, 1981)
[14] D.E. Aspnes, Third-derivative modulation spectroscopy with
low-field electroreflectance, Surf. Sci. 37, 418–442 (1973),
http://dx.doi.org/10.1016/0039-6028(73)90337-3
[15] B.V. Shanabrook, O.J. Glembocki, and W.T. Beard,
Photoreflectance modulation mechanism in GaAs / AlxGa1−xAs
multiple quantum wells, Phys. Rev. B 35(5), 2540–2543
(1987),
http://dx.doi.org/10.1103/PhysRevB.35.2540
[16] X. Yin, X. Guo, F.H. Pollak, G.D. Pettit, J.M. Woodal, T.P.
Chin, and C.W. Tu, Nature of band bending at semiconductor surface
by contactless electroreflectance, Appl. Phys. Lett. 60(11),
1336–1338 (1992),
http://dx.doi.org/10.1063/1.107335
[17] D.E. Aspnes and A.A. Studna, Schottky-barrier
electroreflectance: Application to GaAs, Phys. Rev. B 7(10),
4605–4625 (1973),
http://dx.doi.org/10.1103/PhysRevB.7.4605
[18] O. Mayrock, H.-J. Wünsche, and F. Henneberger, Polarization
charge screening and indium surface segregation in (In,Ga)N / GaN
single and multiple quantum wells, Phys. Rev. B 62(24), 16870–16880
(2000),
http://dx.doi.org/10.1103/PhysRevB.62.16870
[19] A.J. Shields and P.C. Klipstein, Line-shape model for the
modulated reflectance of multiple quantum wells, Phys Rev. B 43(11),
9118–9125 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.9118
[20] K. Satzke, G. Weiser, W. Stolz, and K. Ploog, Optical study of
electronic states of In0.53Ga0.57As / In0.52Al0.48As
quantum wells in high electric fields, Phys. Rev. B 43(3),
2263–2271 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.2263
[21] R. Kudrawiec, G. Sęk, K. Ryczko, J. Misiewicz, and J.C.
Harmand, Photoreflectance investigations of oscillator
strength and broadening of optical transitions for GaAsSb–GaInAs /
GaAs bilayer quantum wells, Appl. Phys. Lett. 84(18),
3453–3455 (2004),
http://dx.doi.org/10.1063/1.1737065
[22] S.L. Mioc, J.W. Garland, and B.R. Bennet, Charge trapping and
built-in field studies in electroreflectance of a UN+ GaAs
structure, Semicond. Sci. Technol. 11(4), 521–524 (1996),
http://dx.doi.org/10.1088/0268-1242/11/4/010
[23] B. Jonsson and S.T. Eng, Solving the Shrödinger equation in
arbitrary quantum well profiles using the transfer matrix method,
IEEE J. Quantum Electron. 26(11), 2025–2035 (1990),
http://dx.doi.org/10.1109/3.62122
[24] J. Kortus and J. Monecke, Formation of subbands in δ-doped
semiconductors, Phys. Rev. B 49(24), 17216–17223 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.17216