[PDF]    http://dx.doi.org/10.3952/lithjphys.46110

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 63–66 (2006)


ELECTRON INTER-VALLEY TRANSFER DYNAMICS IN GERMANIUM STUDIED BY THE OPTICAL PUMP – TERAHERTZ PROBE TECHNIQUE
A. Urbanowicza, R. Adomavičiusa, A. Krotkusa, and V.L. Malevichb
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: aurban@pfi.lt
bInstitute of Physics, National Academy of Sciences of Belarus, F. Skaryna Ave. 68, 220072, Minsk, Republic of Belarus

Received 26 October 2005

The electron dynamics in germanium was studied both experimentally and theoretically. Visible pump – THz probe technique was used for experimental observation of the electron inter-valley transfer dynamics in that material; measurement results were compared with the numerical Monte Carlo simulation. The value of the deformation potential for electron scattering between nonequivalent L and Δ valleys was determined from this comparison and the possible use of Ge crystals in ultrafast optoelectronics was discussed.
Keywords: germanium, optical pump terahertz probe
PACS: 42.65.Re, 72.30.+q, 78.47.+p


ELEKTRONŲ TARPSLĖNINIO PERSISKIRSTYMO GERMANYJE TYRIMAS OPTINIO ŽADINIMO IR TERAHERCINIO STROBAVIMO METODU
A. Urbanowicza, R. Adomavičiusa, A. Krotkusa, V.L. Malevichb
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bFizikos institutas, Baltarusijos nacionalinė mokslų akademija, Minskas, Baltarusija

Elektronų dinamika germanyje (Ge) studijuota eksperimentiškai ir teoriškai. Matomos šviesos žadinimo ir terahercinio zondavimo metodas naudotas eksperimentiniam elektronų dinamikos stebėjimui; tyrimo rezultatai palyginti su skaitmeniniu Monte Karlo modeliavimu. Iš eksperimentinių ir teorinių rezultatų palyginimo nustatyta elektronų sklaidos deformacijos potencialo vertė tarp neekvivalentinių L ir Δ lygmenų. Aptartas galimas Ge kristalų panaudojimas ultrasparčioje optoelektronikoje.


References / Nuorodos


[1] F.W. Smith, H.Q. Le, V. Diaduk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang, Appl. Phys. Lett. 54, 890 (1989),
http://dx.doi.org/10.1063/1.100800
[2] A. Krotkus, R. Viselga, K. Bertulis, V. Jasutis, S. Marcinkevicius, and U. Olin, Appl. Phys. Lett. 66, 1939 (1995),
http://dx.doi.org/10.1063/1.113283
[3] U. Siegner, R. Fluck, G. Zhang, and U. Keller, Appl. Phys. Lett. 69, 2566 (1996),
http://dx.doi.org/10.1063/1.117701
[4] B.B. Hu, E.A. De Suoza, W.M. Knox, J.E. Cunningham, M.C. Nuss, A.V. Kuznetsov, and S.L. Chuang, Phys. Rev. Lett. 74, 1689 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.1689
[5] S.S. Prabhu, S.E. Ralph, M.R. Melloch, and E.S. Harmon, Appl. Phys. Lett. 70, 2419 (1997),
http://dx.doi.org/10.1063/1.118890
[6] M.C. Beard, G.M. Turner, and C.A. Schmuttenmaer, J. Appl. Phys. 90, 5915 (2001),
http://dx.doi.org/10.1063/1.1416140
[7] C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983),
http://dx.doi.org/10.1103/RevModPhys.55.645
[8] W. Fawcett and E.G.S. Paige, J. Phys. C 4, 1801 (1971),
http://dx.doi.org/10.1088/0022-3719/4/13/031
[9] A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, 1994)
[10] X.C. Zhang, B.B. Hu, J.T. Darrow, and D.H. Auston, Appl. Phys. Lett. 56, 1011 (1990),
http://dx.doi.org/10.1063/1.102601