[PDF]
http://dx.doi.org/10.3952/lithjphys.46110
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 63–66 (2006)
ELECTRON INTER-VALLEY TRANSFER
DYNAMICS IN GERMANIUM STUDIED BY THE OPTICAL PUMP – TERAHERTZ
PROBE TECHNIQUE
A. Urbanowicza, R. Adomavičiusa, A. Krotkusa,
and V.L. Malevichb
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: aurban@pfi.lt
bInstitute of Physics, National Academy of
Sciences of Belarus, F. Skaryna Ave. 68, 220072, Minsk, Republic
of Belarus
Received 26 October 2005
The electron dynamics in germanium was studied
both experimentally and theoretically. Visible pump – THz probe
technique was used for experimental observation of the electron
inter-valley transfer dynamics in that material; measurement
results were compared with the numerical Monte Carlo simulation.
The value of the deformation potential for electron scattering
between nonequivalent L and Δ valleys was determined from this
comparison and the possible use of Ge crystals in ultrafast
optoelectronics was discussed.
Keywords: germanium, optical pump terahertz probe
PACS: 42.65.Re, 72.30.+q, 78.47.+p
ELEKTRONŲ TARPSLĖNINIO
PERSISKIRSTYMO GERMANYJE TYRIMAS OPTINIO ŽADINIMO IR
TERAHERCINIO STROBAVIMO METODU
A. Urbanowicza, R. Adomavičiusa, A. Krotkusa,
V.L. Malevichb
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bFizikos institutas, Baltarusijos nacionalinė
mokslų akademija, Minskas, Baltarusija
Elektronų dinamika germanyje (Ge) studijuota
eksperimentiškai ir teoriškai. Matomos šviesos žadinimo ir
terahercinio zondavimo metodas naudotas eksperimentiniam elektronų
dinamikos stebėjimui; tyrimo rezultatai palyginti su skaitmeniniu
Monte Karlo modeliavimu. Iš eksperimentinių ir teorinių rezultatų
palyginimo nustatyta elektronų sklaidos deformacijos potencialo
vertė tarp neekvivalentinių L ir Δ lygmenų. Aptartas galimas Ge
kristalų panaudojimas ultrasparčioje optoelektronikoje.
References / Nuorodos
[1] F.W. Smith, H.Q. Le, V. Diaduk, M.A. Hollis, A.R. Calawa, S.
Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang, Appl.
Phys. Lett. 54, 890 (1989),
http://dx.doi.org/10.1063/1.100800
[2] A. Krotkus, R. Viselga, K. Bertulis, V. Jasutis, S.
Marcinkevicius, and U. Olin, Appl. Phys. Lett. 66, 1939
(1995),
http://dx.doi.org/10.1063/1.113283
[3] U. Siegner, R. Fluck, G. Zhang, and U. Keller, Appl. Phys. Lett.
69, 2566 (1996),
http://dx.doi.org/10.1063/1.117701
[4] B.B. Hu, E.A. De Suoza, W.M. Knox, J.E. Cunningham, M.C. Nuss,
A.V. Kuznetsov, and S.L. Chuang, Phys. Rev. Lett. 74, 1689
(1995),
http://dx.doi.org/10.1103/PhysRevLett.74.1689
[5] S.S. Prabhu, S.E. Ralph, M.R. Melloch, and E.S. Harmon, Appl.
Phys. Lett. 70, 2419 (1997),
http://dx.doi.org/10.1063/1.118890
[6] M.C. Beard, G.M. Turner, and C.A. Schmuttenmaer, J. Appl. Phys.
90, 5915 (2001),
http://dx.doi.org/10.1063/1.1416140
[7] C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645
(1983),
http://dx.doi.org/10.1103/RevModPhys.55.645
[8] W. Fawcett and E.G.S. Paige, J. Phys. C 4, 1801 (1971),
http://dx.doi.org/10.1088/0022-3719/4/13/031
[9] A. Dargys and J. Kundrotas, Handbook on Physical Properties
of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers,
Vilnius, 1994)
[10] X.C. Zhang, B.B. Hu, J.T. Darrow, and D.H. Auston, Appl. Phys.
Lett. 56, 1011 (1990),
http://dx.doi.org/10.1063/1.102601