[PDF]    http://dx.doi.org/10.3952/lithjphys.46112

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 117–121 (2006)


SURFACE PLASMON RESONANCE SPECTROSCOPY OF Au / HEXANETHIOL / 9-(5’-FERROCENYLPENTANOYLOXY) NONYL DISULFIDE THIN FILMS
V. Vaičikauskasa, Z. Balevičiusa, I. Ignatjevb, and G. Valinčiusb
aLaboratory of Nonlinear Optics and Spectroscopy, Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: zbalevicius@ar.fi.lt
bInstitute of Biochemistry, Mokslininkų 12, LT-08662 Vilnius, Lithuania
E-mail: gintaras@bchi.lt

Received 16 December 2005

The surface plasmon resonance method was used for determination of 9-(5’-ferrocenylpentanoyloxy) nonyl disulfide (FPONDS) and lipase thin film thicknesses and optical constants. Surface plasmons were excited in the Kretchmann configuration on the thin 50 nm gold film on the BK7 or SF10 glass prism. Sufficient sensitivity of the method for investigation of lipase interaction with a thin FPONDS layer (d = 2.9 nm) kinetics was demonstrated. From the experimental plasmon minimum shift to higher angles it could be concluded that lipase is adsorbed on the FPONDS and as a result it causes an increase in the effective layer thickness. The obtained results are important in understanding the interaction of these molecules, determination of their size and distribution on the surface.
Keywords: surface plasmons, biosensor, FPONDS, lipase
PACS: 87.80.y, 73.20.Mf, 78.66.Bz


PLONŲ AUKSO / HEKSANTIOLIO / FPONDS SLUOKSNIŲ TYRIMAS PAVIRŠINIŲ PLAZMONŲ REZONANSO SPEKTROSKOPIJOS METODU
V. Vaičikauskasa, Z. Balevičiusa, I. Ignatjevb, G. Valinčiusb
aFizikos institutas, Vilnius, Lietuva
bBiochemijos institutas, Vilnius, Lietuva

Paviršinių plazmonų rezonanso metodas buvo naudojamas plonų FPONDS (9-(5’-ferocenilpentanoiloksi) nonil disulfidas) ir lipazės sluoksnių storiams ir optinėms konstantoms nustatyti. PPR buvo žadinami, BK7 ir SF10 prizmes padengiant apie 50 nm aukso sluoksniu (Kretschmann konfigūracija). Eksperimentiškai pademonstruotas pakankamas metodo jautris, tiriant lipazės sąveikos su FPONDS sluoksniu (d = 2,9 nm) kinetiką. Iš PPR kreivių poslinkio į didesnių kampų pusę galima daryti išvadą, kad lipazė sorbuojasi ant FPONDS ir dėl to padidėja efektinis sluoksnio storis. Šie tyrimai svarbūs, siekiant išsiaiškinti šių molekulių sąveiką, dydžius ir jų išsidėstymą paviršiuje.


References / Nuorodos


[1] C. Nylander, B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance, Sensors and Actuators 3, 79–88 (1982),
http://dx.doi.org/10.1016/0250-6874(82)80008-5
[2] B. Liedberg, C. Nylander, and I. Lundstrom, Surface plasmons resonance for gas detection and biosensing, Sensors and Actuators 4, 299–304 (1983),
http://dx.doi.org/10.1016/0250-6874(83)85036-7
[3] K. Matsubara, S. Kawata, and S. Minami, Optical chemical sensor based on surface plasmon measurement, Appl. Opt. 27 (6), 1160–1163 (1988),
http://dx.doi.org/10.1364/AO.27.001160
[4] P. Romppainen, V. Lantto, and S. Leppavuori, Effect of water vapour on the CO response behaviour of tin dioxide sensors in constant temperature-pulsed modes of operation, Sensors and Actuators B 1, 73–78 (1990),
http://dx.doi.org/10.1016/0925-4005(90)80175-Y
[5] H. Raether, Surface plasma oscillations as a tool for surface examinations, Surf. Sci. 8, 233 (1967),
http://dx.doi.org/10.1016/0039-6028(67)90085-4
[6] M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander, J. Ward, and C.A. Ward, Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, Appl. Opt. 11, 1099–1119 (1983),
http://dx.doi.org/10.1364/AO.22.001099
[7] R.H. Huebner, E.T. Arakawa, R.A. MacRae, and R.N. Hamm, Optical constants of vacuum-evaporated silver films, J. Opt. Soc. Am. 54, 1434–1439 (1964),
http://dx.doi.org/10.1364/JOSA.54.001434
[8] J. Homola, S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: Review, Sensors and Actuators B 54, 3–15 (1999),
http://dx.doi.org/10.1016/S0925-4005(98)00321-9
[9] G. Brink, H. Sigl, and E. Sackmann, Near-infrared surface plasmon resonance in silicon-based sensor: New opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding, Sensors and Actuators B 24–25, 756–761 (1995),
http://dx.doi.org/10.1016/0925-4005(95)85168-2
[10] R.J. Green, R.A. Frazier, K.M. Shakesheff, M.C. Davies, C.J. Roberts, and S.J.B. Tendler, Surface plasmon resonance analysis of dynamic biological interactions with biomaterials, Biomaterials 21, 1823–1835 (2000),
http://dx.doi.org/10.1016/s0142-9612(00)00077-6
[11] B. Liedberg, I. Lundstrom, and E. Stenberd, Principles of biosensing with an extended coupling matrix and surface plasmon resonance, Sensors and Actuators B 11, 63–72 (1993),
http://dx.doi.org/10.1016/0925-4005(93)85239-7
[12] L.M. Zang and D. Uttamchandani, Optical chemical sensing employing surface plasmon resonance, Electron. Lett. 23, 1469–1470 (1988),
http://dx.doi.org/10.1049/el:19881004
[13] L.S. Jung, J.S. Shumaker-Parry, C.T. Campbell, S.S. Yee, and M.H. Gelb, Quantification of tight binding to surface-immobilized phospholipid vesicles using surface plasmon resonance: Binding constant of phospholipase A2, J. Am. Chem. Soc. 122(17), 4177–4184 (2000),
http://dx.doi.org/10.1021/ja993879v
[14] G. Valincius, I. Ignatjev, G. Niaura, M. Kažemėkaitė, Z. Talaikytė, V. Razumas, A. Svendsen, Electrochemical method for the detection of lipase activity, Anal. Chem. 77, 2632–2636 (2005),
http://dx.doi.org/10.1021/ac048230+