[PDF]
http://dx.doi.org/10.3952/lithjphys.46112
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 117–121 (2006)
SURFACE PLASMON RESONANCE
SPECTROSCOPY OF Au / HEXANETHIOL / 9-(5’-FERROCENYLPENTANOYLOXY)
NONYL DISULFIDE THIN FILMS
V. Vaičikauskasa, Z. Balevičiusa, I.
Ignatjevb, and G. Valinčiusb
aLaboratory of Nonlinear Optics and Spectroscopy,
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: zbalevicius@ar.fi.lt
bInstitute of Biochemistry, Mokslininkų 12,
LT-08662 Vilnius, Lithuania
E-mail: gintaras@bchi.lt
Received 16 December 2005
The surface plasmon resonance method was used
for determination of 9-(5’-ferrocenylpentanoyloxy) nonyl disulfide
(FPONDS) and lipase thin film thicknesses and optical constants.
Surface plasmons were excited in the Kretchmann configuration on
the thin 50 nm gold film on the BK7 or SF10 glass prism.
Sufficient sensitivity of the method for investigation of lipase
interaction with a thin FPONDS layer (d = 2.9 nm) kinetics
was demonstrated. From the experimental plasmon minimum shift to
higher angles it could be concluded that lipase is adsorbed on the
FPONDS and as a result it causes an increase in the effective
layer thickness. The obtained results are important in
understanding the interaction of these molecules, determination of
their size and distribution on the surface.
Keywords: surface plasmons, biosensor, FPONDS, lipase
PACS: 87.80.y, 73.20.Mf, 78.66.Bz
PLONŲ AUKSO / HEKSANTIOLIO /
FPONDS SLUOKSNIŲ TYRIMAS PAVIRŠINIŲ PLAZMONŲ REZONANSO
SPEKTROSKOPIJOS METODU
V. Vaičikauskasa, Z. Balevičiusa, I.
Ignatjevb, G. Valinčiusb
aFizikos institutas, Vilnius, Lietuva
bBiochemijos institutas, Vilnius, Lietuva
Paviršinių plazmonų rezonanso metodas buvo
naudojamas plonų FPONDS (9-(5’-ferocenilpentanoiloksi) nonil
disulfidas) ir lipazės sluoksnių storiams ir optinėms konstantoms
nustatyti. PPR buvo žadinami, BK7 ir SF10 prizmes padengiant apie
50 nm aukso sluoksniu (Kretschmann konfigūracija).
Eksperimentiškai pademonstruotas pakankamas metodo jautris,
tiriant lipazės sąveikos su FPONDS sluoksniu (d = 2,9 nm)
kinetiką. Iš PPR kreivių poslinkio į didesnių kampų pusę galima
daryti išvadą, kad lipazė sorbuojasi ant FPONDS ir dėl to padidėja
efektinis sluoksnio storis. Šie tyrimai svarbūs, siekiant
išsiaiškinti šių molekulių sąveiką, dydžius ir jų išsidėstymą
paviršiuje.
References / Nuorodos
[1] C. Nylander, B. Liedberg, and T. Lind, Gas detection by means of
surface plasmon resonance, Sensors and Actuators 3, 79–88
(1982),
http://dx.doi.org/10.1016/0250-6874(82)80008-5
[2] B. Liedberg, C. Nylander, and I. Lundstrom, Surface plasmons
resonance for gas detection and biosensing, Sensors and Actuators 4,
299–304 (1983),
http://dx.doi.org/10.1016/0250-6874(83)85036-7
[3] K. Matsubara, S. Kawata, and S. Minami, Optical chemical sensor
based on surface plasmon measurement, Appl. Opt. 27 (6),
1160–1163 (1988),
http://dx.doi.org/10.1364/AO.27.001160
[4] P. Romppainen, V. Lantto, and S. Leppavuori, Effect of water
vapour on the CO response behaviour of tin dioxide sensors in
constant temperature-pulsed modes of operation, Sensors and
Actuators B 1, 73–78 (1990),
http://dx.doi.org/10.1016/0925-4005(90)80175-Y
[5] H. Raether, Surface plasma oscillations as a tool for surface
examinations, Surf. Sci. 8, 233 (1967),
http://dx.doi.org/10.1016/0039-6028(67)90085-4
[6] M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W.
Alexander, J. Ward, and C.A. Ward, Optical properties of metals Al,
Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and
far infrared, Appl. Opt. 11, 1099–1119 (1983),
http://dx.doi.org/10.1364/AO.22.001099
[7] R.H. Huebner, E.T. Arakawa, R.A. MacRae, and R.N. Hamm, Optical
constants of vacuum-evaporated silver films, J. Opt. Soc. Am. 54,
1434–1439 (1964),
http://dx.doi.org/10.1364/JOSA.54.001434
[8] J. Homola, S.S. Yee, and G. Gauglitz, Surface plasmon resonance
sensors: Review, Sensors and Actuators B 54, 3–15 (1999),
http://dx.doi.org/10.1016/S0925-4005(98)00321-9
[9] G. Brink, H. Sigl, and E. Sackmann, Near-infrared surface
plasmon resonance in silicon-based sensor: New opportunities in
sensitive detection of biomolecules from aqueous solutions by
applying microstep for discriminating specific and non-specific
binding, Sensors and Actuators B 24–25, 756–761 (1995),
http://dx.doi.org/10.1016/0925-4005(95)85168-2
[10] R.J. Green, R.A. Frazier, K.M. Shakesheff, M.C. Davies, C.J.
Roberts, and S.J.B. Tendler, Surface plasmon resonance analysis of
dynamic biological interactions with biomaterials, Biomaterials 21,
1823–1835 (2000),
http://dx.doi.org/10.1016/s0142-9612(00)00077-6
[11] B. Liedberg, I. Lundstrom, and E. Stenberd, Principles of
biosensing with an extended coupling matrix and surface plasmon
resonance, Sensors and Actuators B 11, 63–72 (1993),
http://dx.doi.org/10.1016/0925-4005(93)85239-7
[12] L.M. Zang and D. Uttamchandani, Optical chemical sensing
employing surface plasmon resonance, Electron. Lett. 23,
1469–1470 (1988),
http://dx.doi.org/10.1049/el:19881004
[13] L.S. Jung, J.S. Shumaker-Parry, C.T. Campbell, S.S. Yee, and
M.H. Gelb, Quantification of tight binding to surface-immobilized
phospholipid vesicles using surface plasmon resonance: Binding
constant of phospholipase A2, J. Am. Chem. Soc. 122(17),
4177–4184 (2000),
http://dx.doi.org/10.1021/ja993879v
[14] G. Valincius, I. Ignatjev, G. Niaura, M. Kažemėkaitė, Z.
Talaikytė, V. Razumas, A. Svendsen, Electrochemical method for the
detection of lipase activity, Anal. Chem. 77, 2632–2636
(2005),
http://dx.doi.org/10.1021/ac048230+