[PDF]
http://dx.doi.org/10.3952/lithjphys.46113
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 85–88 (2006)
THERMAL RESPONSE OF GRAINED La0.67Ca0.33MnO3
FILMS TO MICROWAVE RADIATION
K. Repšas, A. Laurinavičius, R.-A. Vaškevičius, F. Anisimovas, A.
Deksnys, and B. Vengalis
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: anis@pfi.lt
Received 14 November 2005
Response to a microwave radiation was studied
for grained La0.67Ca0.33MnO3
films (d = 0.15 and 1.30 μm) grown by pulsed laser
deposition on MgO (100) substrates. Thermal nature of the response
has been certified for the films at T = 78 K. A mechanism
of the response has been proposed that takes into account
different role of grains and intergrain boundaries on dc and high
frequency currents flowing in the films. Assuming a nonzero
intergrain boundary capacitance, we point out that the microwave
radiation heats mainly the low resistance grains rather than the
intergrain boundaries. Meanwhile, dc current flowing in the films
is determined by temperature-dependent resistance of the
intergrain media.
Keywords: manganite thin films, microwave radiation
PACS: 75.47.Lx, 75.47De, 78.70.Gq
ŠILUMINIS GRANULIUOTŲ La0,67Ca0,33MnO3
SLUOKSNIŲ ATSAKAS Į MIKROBANGĘ SPINDULIUOTĘ
.K. Repšas, A. Laurinavičius, R.-A. Vaškevičius, F. Anisimovas, A.
Deksnys, B. Vengalis
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Aptiktas tiriamųjų sluoksnių atsakas
mikrobangei spinduliuotei ir nustatyta, kad jis yra šiluminės
prigimties. Pateiktas atsako mechanizmo paaiškinimas, rodantis,
jog elektrinei talpai šuntuojant tarpgranulinių jungčių omines
varžas, mikrobangė spinduliuotė labiausiai kaitina granules,
kurios, šildydamos tarpgranulines jungtis, pakeičia jų ominę
varžą, o kartu ir sluoksnyje tekančios nuolatinės srovės stiprį.
References / Nuorodos
[1] B. Vengalis, A.G. Oginskis, V. Lisauskas, N. Shiktorov, V.
Jasutis, S.A. Karpinskas, A. Česnys, and A. Maneikis, Electrical
transport effects in the epitaxial La0.67Ca0.33MnO3
films and La0.67Sr0.33MnO3 / (LaNiO3,
RuO2) heterostructures, Mater. Sci. Forum 297–298,
303–306 (1999),
http://dx.doi.org/10.4028/www.scientific.net/MSF.297-298.303
[2] S.E. Lofland, M. Dominguez, S.D. Tyagi, S.M. Bhagat, M.C.
Robson, T. Venkatesan, R. Ramesh, I. Takeuchi, Z. Trajanovic, and C.
Kwon, Surface resistance of thin Perovskite films – high-temperature
superconductors and giant magnetoresistance manganites, Thin Solid
Films 288, 256–261(1996),
http://dx.doi.org/10.1016/S0040-6090(96)08800-1
[3] C.M. Hu, J. Nitta, A. Jensen, J.B. Hansen, H. Takayanagi, T.
Matsuyama, D. Heitmann, and U. Merkt, Spin injection across a hybrid
heterojunction: Theoretical understanding and experimental approach
(invited), J. Appl. Phys. 91, 7251–7255 (2002),
http://dx.doi.org/10.1063/1.1447282
[4] T. Manago and H. Akinaga, Spin-polarized light emitting diode
using metal / insulator / semiconductor structures, Appl. Phys.
Lett. 81, 694–696 (2002),
http://dx.doi.org/10.1063/1.1496493
[5] J.B. Philipp, J. Klein, C. Recher, T. Walther, W. Mader, M.
Schmid, R. Suryanarayanan, L. Alff, and R. Gross, Microstructure and
magnetoresistance of epitaxial films of the layered perovskite La2−2xSr1+2xMn2O7
(x = 0.3 and 0.4), Phys. Rev. B 65, 184411(11)
(2002),
http://dx.doi.org/10.1002/1521-396X(200202)189:2<367::AID-PSSA367>3.0.CO;2-4
[6] S.E. Lofland, S.M. Bhagat, S.D. Tyagi, Y.M. Mukowskii, S.G.
Karabashev, and A.M. Balbashov, Giant microwave magneto-impedance in
a single crystal of La0.7Sr0.3MnO3:
The effect of ferromagnetic antiresonance, J. Appl. Phys. 80,
3592–3594 (1996),
http://dx.doi.org/10.1063/1.363275
[7] A. Pimenov, M. Biberachev, D. Ivannikov, A. Loidl, V.Yu. Ivanov,
A.A. Mikhin, and A.M. Balbashov, High-field antiferromagnetic
resonance in single-crystalline La0.95Sr0.05MnO3.
Experimental evidence for the existence of a canted magnetic
structure, Phys. Rev. B 62, 5685–5689 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.5685
[8] S.I. Patil, S.M. Bhagat, Q.Q. Shu, S.E. Lofland, S.B. Ogale,
V.N. Smolianinova, X. Zhang, B.S. Palmer, R.S. Decca, F.A. Brown,
H.D. Drew, R.L. Greene, J.O. Troyanchuk, and W.M. Mc Carrol,
Indications of phase separation in polycrystalline La1−xSrxMnO3
for x ≈ 0.5, Phys. Rev. B 62, 9548–9554 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.9548
[9] N.J. Solin, A.A. Samokhvalov, and S.V. Naumov, Role of surface
phenomena in the magnetoresistivity of polycrystalline manganites
La1−xCaxMnO3, Phys. Sol. State 40, 1706–1709 (1998),
http://dx.doi.org/10.1134/1.1130639
[10] N.J. Solin, S.V. Naumov, and A.A. Samokhvalov, Interface
phenomena and microwave magnetoresistance in polycrystalline La1−xCaxMnO3
lanthanum manganites, Phys. Sol. State 42, 925–930 (2000),
http://dx.doi.org/10.1134/1.1131313
[11] K.A. Yates, L.F. Cohen, C. Watine, T.-N. Tay, F. Damay, J.
MacManus-Drisol, R.S. Freitas, L. Ghivelder, E.M. Haines, and G.A.
Gehring, Comparison of dc and microwave resistivity in
polycrystalline La0.7−xYxCa0.3MnO3
samples: Influence of Y at grain boundaries, J. Appl. Phys. 88,
4703–4708 (2000),
http://dx.doi.org/10.1063/1.1289522
[12] M.-T. Hong, Y.-C. Chen, C.-C. Hsu, W.-C. Wu, T.-C. Chow, and H.
Chou, Optical detection by a La0.67Ca0.33MnO3−y
thin-film microbridge, Jpn. J. Appl. Phys. 40, 4886–4890
(2001),
http://dx.doi.org/10.1143/JJAP.40.4886
[13] H.Y. Hwang, S.-W. Cheong, and B. Batlogg, Enhancing the low
field magnetoresistive response in perovskite manganites, Appl.
Phys. Lett. 68, 3494–3496 (1996),
http://dx.doi.org/10.1063/1.115769
[14] A. Gilabert, A. Plecenik, K. Fröhlich, Š. Gaži, M. Pripko, Ž.
Mozolova, D. Machajdik, Š. Benačka, M.G. Medici, M. Grajcar, and P.
Kuš, Photoinduced insulator–metal transition in La0.81MnO3
/ Al2O3 / Nb tunnel junctions, Appl. Phys.
Lett. 78, 1712–1714 (2001),
http://dx.doi.org/10.1063/1.1354163
[15] S.D. Tyagi, S.E. Lofland, M. Dominguez, S.M. Bhagat, C. Kwon,
M.C. Robson, R. Ramesh, and T. Venkatesan, Low-field microwave
magnetoabsorption in manganites, Appl. Phys. Lett. 68,
2893–2895 (1996),
http://dx.doi.org/10.1063/1.116323
[16] F.J. Owens, Giant magneto radio frequency absorption in
magneto-resistive materials La0.7(Sr, Ca)0.3MnO3,
J. Appl. Phys. 82, 3054–3057 (1997),
http://dx.doi.org/10.1063/1.366143
[17] V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, and S.D.
Tyagi, Temperature and field dependence of microwave losses in
manganite powders, J. Appl. Phys. 86, 1067–1072 (1999),
http://dx.doi.org/10.1063/1.371146
[18] Q.Q. Shu, S.M. Bhagat, S.E. Lofland, and I.O. Troyanchuk,
Finite size effects in microwave loss in colossal magnetoresistance
oxides, Solid State Commun. 109, 73–76 (1998),
http://dx.doi.org/10.1016/S0038-1098(98)00491-8
[19] A. Rinkevich, A. Nossov, V. Vassiliev, and V. Ustinov,
Microwave absorption in lanthanum manganites, Phys. Status Solidi A
179, 221–236 (2000),
http://dx.doi.org/10.1002/1521-396X(200005)179:1<221::AID-PSSA221>3.0.CO;2-E
[20] G. Li, G.-G. Hu, H.D. Zhou, X.J. Fan, and X.-G. Li, Absorption
of microwaves in La1−xSrxMnO3
manganese powders over a wide bandwidth, J. Appl. Phys. 90,
5512–5514 (2001),
http://dx.doi.org/10.1063/1.1415053
[21] D.L. Lyfar, S.M. Ryabchenko, V.N. Krivoruchko, S.I. Khartsev,
and A.M. Grishin, Microwave absorption in thin La0.7Sr0.3MnO3:
Manifestation of colossal magnetoresistance, Phys. Rev. B 69,
100409-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.100409
[22] N.V. Volkov, G.A. Petrakowskii, K.A. Sablina, and S.V. Koval,
Influence of the transport current on the magnetoelectric properties
of La0.7Pb0.3MnO3 single crystals
with giant magnetoresistance in the microwave region, Phys. Solid
State 41, 1842–1849 (2001),
http://dx.doi.org/10.1134/1.1131111
[23] Waveguide Handbook, ed. N. Marcuvitz (McGraw-Hill, New
York, 1986) p. 62