[PDF]    http://dx.doi.org/10.3952/lithjphys.46113

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 85–88 (2006)


THERMAL RESPONSE OF GRAINED La0.67Ca0.33MnO3 FILMS TO MICROWAVE RADIATION
K. Repšas, A. Laurinavičius, R.-A. Vaškevičius, F. Anisimovas, A. Deksnys, and B. Vengalis
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: anis@pfi.lt

Received 14 November 2005

Response to a microwave radiation was studied for grained La0.67Ca0.33MnO3 films (d = 0.15 and 1.30 μm) grown by pulsed laser deposition on MgO (100) substrates. Thermal nature of the response has been certified for the films at T = 78 K. A mechanism of the response has been proposed that takes into account different role of grains and intergrain boundaries on dc and high frequency currents flowing in the films. Assuming a nonzero intergrain boundary capacitance, we point out that the microwave radiation heats mainly the low resistance grains rather than the intergrain boundaries. Meanwhile, dc current flowing in the films is determined by temperature-dependent resistance of the intergrain media.
Keywords: manganite thin films, microwave radiation
PACS: 75.47.Lx, 75.47De, 78.70.Gq


ŠILUMINIS GRANULIUOTŲ La0,67Ca0,33MnO3 SLUOKSNIŲ ATSAKAS Į MIKROBANGĘ SPINDULIUOTĘ
.K. Repšas, A. Laurinavičius, R.-A. Vaškevičius, F. Anisimovas, A. Deksnys, B. Vengalis
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Aptiktas tiriamųjų sluoksnių atsakas mikrobangei spinduliuotei ir nustatyta, kad jis yra šiluminės prigimties. Pateiktas atsako mechanizmo paaiškinimas, rodantis, jog elektrinei talpai šuntuojant tarpgranulinių jungčių omines varžas, mikrobangė spinduliuotė labiausiai kaitina granules, kurios, šildydamos tarpgranulines jungtis, pakeičia jų ominę varžą, o kartu ir sluoksnyje tekančios nuolatinės srovės stiprį.


References / Nuorodos


[1] B. Vengalis, A.G. Oginskis, V. Lisauskas, N. Shiktorov, V. Jasutis, S.A. Karpinskas, A. Česnys, and A. Maneikis, Electrical transport effects in the epitaxial La0.67Ca0.33MnO3 films and La0.67Sr0.33MnO3 / (LaNiO3, RuO2) heterostructures, Mater. Sci. Forum 297–298, 303–306 (1999),
http://dx.doi.org/10.4028/www.scientific.net/MSF.297-298.303
[2] S.E. Lofland, M. Dominguez, S.D. Tyagi, S.M. Bhagat, M.C. Robson, T. Venkatesan, R. Ramesh, I. Takeuchi, Z. Trajanovic, and C. Kwon, Surface resistance of thin Perovskite films – high-temperature superconductors and giant magnetoresistance manganites, Thin Solid Films 288, 256–261(1996),
http://dx.doi.org/10.1016/S0040-6090(96)08800-1
[3] C.M. Hu, J. Nitta, A. Jensen, J.B. Hansen, H. Takayanagi, T. Matsuyama, D. Heitmann, and U. Merkt, Spin injection across a hybrid heterojunction: Theoretical understanding and experimental approach (invited), J. Appl. Phys. 91, 7251–7255 (2002),
http://dx.doi.org/10.1063/1.1447282
[4] T. Manago and H. Akinaga, Spin-polarized light emitting diode using metal / insulator / semiconductor structures, Appl. Phys. Lett. 81, 694–696 (2002),
http://dx.doi.org/10.1063/1.1496493
[5] J.B. Philipp, J. Klein, C. Recher, T. Walther, W. Mader, M. Schmid, R. Suryanarayanan, L. Alff, and R. Gross, Microstructure and magnetoresistance of epitaxial films of the layered perovskite La2−2xSr1+2xMn2O7 (x = 0.3 and 0.4), Phys. Rev. B 65, 184411(11) (2002),
http://dx.doi.org/10.1002/1521-396X(200202)189:2<367::AID-PSSA367>3.0.CO;2-4
[6] S.E. Lofland, S.M. Bhagat, S.D. Tyagi, Y.M. Mukowskii, S.G. Karabashev, and A.M. Balbashov, Giant microwave magneto-impedance in a single crystal of La0.7Sr0.3MnO3: The effect of ferromagnetic antiresonance, J. Appl. Phys. 80, 3592–3594 (1996),
http://dx.doi.org/10.1063/1.363275
[7] A. Pimenov, M. Biberachev, D. Ivannikov, A. Loidl, V.Yu. Ivanov, A.A. Mikhin, and A.M. Balbashov, High-field antiferromagnetic resonance in single-crystalline La0.95Sr0.05MnO3. Experimental evidence for the existence of a canted magnetic structure, Phys. Rev. B 62, 5685–5689 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.5685
[8] S.I. Patil, S.M. Bhagat, Q.Q. Shu, S.E. Lofland, S.B. Ogale, V.N. Smolianinova, X. Zhang, B.S. Palmer, R.S. Decca, F.A. Brown, H.D. Drew, R.L. Greene, J.O. Troyanchuk, and W.M. Mc Carrol, Indications of phase separation in polycrystalline La1−xSrxMnO3 for x ≈ 0.5, Phys. Rev. B 62, 9548–9554 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.9548
[9] N.J. Solin, A.A. Samokhvalov, and S.V. Naumov, Role of surface phenomena in the magnetoresistivity of polycrystalline manganites La1−xCaxMnO3, Phys. Sol. State 40, 1706–1709 (1998),
http://dx.doi.org/10.1134/1.1130639
[10] N.J. Solin, S.V. Naumov, and A.A. Samokhvalov, Interface phenomena and microwave magnetoresistance in polycrystalline La1−xCaxMnO3 lanthanum manganites, Phys. Sol. State 42, 925–930 (2000),
http://dx.doi.org/10.1134/1.1131313
[11] K.A. Yates, L.F. Cohen, C. Watine, T.-N. Tay, F. Damay, J. MacManus-Drisol, R.S. Freitas, L. Ghivelder, E.M. Haines, and G.A. Gehring, Comparison of dc and microwave resistivity in polycrystalline La0.7−xYxCa0.3MnO3 samples: Influence of Y at grain boundaries, J. Appl. Phys. 88, 4703–4708 (2000),
http://dx.doi.org/10.1063/1.1289522
[12] M.-T. Hong, Y.-C. Chen, C.-C. Hsu, W.-C. Wu, T.-C. Chow, and H. Chou, Optical detection by a La0.67Ca0.33MnO3−y thin-film microbridge, Jpn. J. Appl. Phys. 40, 4886–4890 (2001),
http://dx.doi.org/10.1143/JJAP.40.4886
[13] H.Y. Hwang, S.-W. Cheong, and B. Batlogg, Enhancing the low field magnetoresistive response in perovskite manganites, Appl. Phys. Lett. 68, 3494–3496 (1996),
http://dx.doi.org/10.1063/1.115769
[14] A. Gilabert, A. Plecenik, K. Fröhlich, Š. Gaži, M. Pripko, Ž. Mozolova, D. Machajdik, Š. Benačka, M.G. Medici, M. Grajcar, and P. Kuš, Photoinduced insulator–metal transition in La0.81MnO3 / Al2O3 / Nb tunnel junctions, Appl. Phys. Lett. 78, 1712–1714 (2001),
http://dx.doi.org/10.1063/1.1354163
[15] S.D. Tyagi, S.E. Lofland, M. Dominguez, S.M. Bhagat, C. Kwon, M.C. Robson, R. Ramesh, and T. Venkatesan, Low-field microwave magnetoabsorption in manganites, Appl. Phys. Lett. 68, 2893–2895 (1996),
http://dx.doi.org/10.1063/1.116323
[16] F.J. Owens, Giant magneto radio frequency absorption in magneto-resistive materials La0.7(Sr, Ca)0.3MnO3, J. Appl. Phys. 82, 3054–3057 (1997),
http://dx.doi.org/10.1063/1.366143
[17] V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, and S.D. Tyagi, Temperature and field dependence of microwave losses in manganite powders, J. Appl. Phys. 86, 1067–1072 (1999),
http://dx.doi.org/10.1063/1.371146
[18] Q.Q. Shu, S.M. Bhagat, S.E. Lofland, and I.O. Troyanchuk, Finite size effects in microwave loss in colossal magnetoresistance oxides, Solid State Commun. 109, 73–76 (1998),
http://dx.doi.org/10.1016/S0038-1098(98)00491-8
[19] A. Rinkevich, A. Nossov, V. Vassiliev, and V. Ustinov, Microwave absorption in lanthanum manganites, Phys. Status Solidi A 179, 221–236 (2000),
http://dx.doi.org/10.1002/1521-396X(200005)179:1<221::AID-PSSA221>3.0.CO;2-E
[20] G. Li, G.-G. Hu, H.D. Zhou, X.J. Fan, and X.-G. Li, Absorption of microwaves in La1−xSrxMnO3 manganese powders over a wide bandwidth, J. Appl. Phys. 90, 5512–5514 (2001),
http://dx.doi.org/10.1063/1.1415053
[21] D.L. Lyfar, S.M. Ryabchenko, V.N. Krivoruchko, S.I. Khartsev, and A.M. Grishin, Microwave absorption in thin La0.7Sr0.3MnO3: Manifestation of colossal magnetoresistance, Phys. Rev. B 69, 100409-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.100409
[22] N.V. Volkov, G.A. Petrakowskii, K.A. Sablina, and S.V. Koval, Influence of the transport current on the magnetoelectric properties of La0.7Pb0.3MnO3 single crystals with giant magnetoresistance in the microwave region, Phys. Solid State 41, 1842–1849 (2001),
http://dx.doi.org/10.1134/1.1131111
[23] Waveguide Handbook, ed. N. Marcuvitz (McGraw-Hill, New York, 1986) p. 62