[PDF]    http://dx.doi.org/10.3952/lithjphys.46117

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 39–46 (2006)


SESTIMATION OF THE SPECTRAL DENSITY FUNCTION OF LH2 COMPLEXES FROM THE TEMPERATURE DEPENDENCE OF THE ABSORPTION SPECTRA
O. Vrublevskajaa, V. Urbonienėb, G. Trinkūnasa, L. Valkūnasa,c, A. Galld, and B. Robertd
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: Oksana@ar.fi.lt
bDepartment of General Physics and Spectroscopy, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
cDepartment of Theoretical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
dService de Biophysique des Prote’ines et des Membranes, DBJC / CEA and CNRS / URA2096, C. E. A. Saclay, 91191 Gif-sur-Yvette Cedex, France

Received 2 December 2005

The spectral density function of a bacteriochlorophyll molecule in its parametric form describing the exciton coupling to the vibrational bath including the protein and the solvent modes has been determined. This form of spectral density is applied by simulating the temperature dependence of the absorption spectra of the peripheral light harvesting complexes, LH2, of the photosynthetic purple bacterium Rhodobacter sphaeroides inserted into the polyvinyl alcohol film. It has been found that the dynamic characteristics of broadening of both absorption bands of LH2 with the maxima at 850 nm and 800 nm are similar to those already obtained for the glycerol solution. The static spectral inhomogeneity of LH2 in the polyvinyl alcohol film, however, is much larger than in the glycerol solution. It is concluded that the LH2 complex in the polyvinyl alcohol film with increase of the temperature is subjected to compression, which is the source of the additional static disorder.
Keywords: absorption spectra, Rhodobacter sphaeroides, LH2, spectral density function, temperature dependence, glycerol, polyvinyl alcohol
PACS: 71.35.-y, 71.35 Aa, 87.15 Aa, 87.15-v.


LH2 KOMPLEKSŲ SPEKTRINĖS TANKIO FUNKCIJOS NUSTATYMAS, REMIANTIS SUGERTIES SPEKTRŲ TEMPERATŪRINIŲ PRIKLAUSOMYBIŲ MATAVIMAIS
O. Vrublevskajaa, V. Urbonienėb, G. Trinkūnasa, L. Valkūnasa,b, A. Gallc, B. Robertc
aFizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
cService de Biophysique des Prote’ines et des Membranes, C.E.A. Saclay, Prancūzija

Nustatyta bakteriochlorofilo molekulės spektrinės tankio funkcijos, aprašančios eksitonų sąveiką su visomis bakteriochlorofilo molekulių, baltymo ir tirpiklio vibracinėmis modomis, parametrinė forma. Ši forma pritaikyta periferinių šviesą surenkančių kompleksų LH2, išskirtų iš Rhodobacter sphaeroides fotosintetinančių bakterijų, esančių polivinilalkoholio plėvelėje, sugerties spektrų temperatūrinėms priklausomybėms modeliuoti. Rasta, kad abiejų LH2 sugerties juostų su maksimumais ties 850 ir 800 nm išplitimo dinaminės savybės panašios į atitinkamas glicerolio buferio savybes. Tačiau polivinilalkoholio plėvelėje LH2 spektrinis išplitimas dėl statinės netvarkos yra daug didesnis negu glicerolio buferyje. Galima daryti išvadą, kad polivinilalkoholio plėvelėje LH2 kompleksai kylant temperatūrai yra suspaudžiami, o tai lemia papildomą statinę netvarką.


References / Nuorodos


[1] G.R. Fleming and R. van Grondelle, Femtosecond spectroscopy of photosynthetic light-harvesting systems, Curr. Opinion Struct. Biol. 7, 738–748 (1997),
http://dx.doi.org/10.1016/S0959-440X(97)80086-3
[2] G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W. Isaacs, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature 374, 517–521 (1995),
http://dx.doi.org/10.1038/374517a0
[3] V. Zazubovich, R. Jankowiak, and G.J. Small, On B800–B800 energy transfer in the LH2 complex of purple bacteria, J. Lumin. 98, 123–129 (2002),
http://dx.doi.org/10.1016/S0022-2313(02)00260-0
[4] X. Hu, T. Ritz, A. Damjanovic, and K. Schulten, Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria, J. Phys. Chem. B 101 (19), 3854–3871 (1997),
http://dx.doi.org/10.1021/jp963777g
[5] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000),
http://dx.doi.org/10.1142/3609
[6] F.G. Parak, Physical aspects of protein dynamics, Rep. Prog. Phys. 66, 103–129 (2003),
http://dx.doi.org/10.1088/0034-4885/66/2/201
[7] V. Urboniene, O. Vrublevskaja, A. Gall, G. Trinkunas, B. Robert, and L. Valkunas, Temperature broadening of LH2 absorption in glycerol solution, Photosynthesis Res. 86(1–2), 49–59 (2005),
http://dx.doi.org/10.1007/s11120-005-2748-9
[8] T. Walz, S.J. Jamieson, C.M. Bowers, P.A. Bullough, and C.N. Hunter, Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides:LH2 at 6 Å, LH1 and RC-LH1 at 25 Å, J. Mol. Biol. 282(4), 833–845 (1998),
http://dx.doi.org/10.1006/jmbi.1998.2050
[9] P. Braun, A.P. Végh, M. von Jan, B. Strohmann, C.N. Hunter, B. Robert, and H. Scheer, Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue α27 in the LH2 light-harvesting complex, Biochim. Biophys. Acta 1607(1), 19–26 (2003),
http://dx.doi.org/10.1016/j.bbabio.2003.08.004
[10] A. Freer, S. Prince, K. Sauer, M. Papiz, A. Hawthornthwaite-Lawless, G. McDermott, R. Cogdell, and N.W. Isaacs, Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila, Structure 4(4), 449–462 (1996),
http://dx.doi.org/10.1016/S0969-2126(96)00050-0
[11] I. Yu, Electrodeless measurement of RF dielectric constant and loss, Meas. Sci. Technol. 4, 344–348 (1993),
http://dx.doi.org/10.1088/0957-0233/4/3/013
[12] A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971),
http://dx.doi.org/10.1007/978-1-4899-5169-4
[13] M. Lax, The Franck–Condon principle and its application to crystals, J. Chem. Phys. 20, 1752–1760 (1952),
http://dx.doi.org/10.1063/1.1700283
[14] S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995)
[15] I.S. Osadko, Selective Spectroscopy of Single Molecules (Springer, Berlin–New York, 2003),
http://dx.doi.org/10.1007/978-3-662-05248-8
[16] V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley–VCH, Berlin, 2004),
http://dx.doi.org/10.1002/9783527602575
[17] T. Meier, V. Chernyak, and S. Mukamel, Femtosecond phonon echoes in molecular aggregates, J. Chem. Phys. 107(21), 8759–8780 (1997),
http://dx.doi.org/10.1063/1.475169
[18] W.M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, Simulation of three-pulse-echo and fluorescence depolarization in photosynthetic aggregates, Phil. Trans. R. Soc. London, Ser. A 356, 405–419 (1998),
http://dx.doi.org/10.1098/rsta.1998.0173
[19] S. Jang and R.J. Silbey, Single complex line shapes of the B850 band of LH2, J. Chem. Phys. 118(20), 9324–9336 (2003),
http://dx.doi.org/10.1063/1.1569240
[20] L.D. Book, A.E. Ostafin, N. Ponomarenko, J.R. Norris, and N.F. Scherer, Exciton delocalization and initial dephasing dynamics of purple bacterial LH2, J. Phys. Chem. B 104(34), 8295–8307 (2000),
http://dx.doi.org/10.1021/jp000485d
[21] T.M.H. Creemers, C.A. de Caro, R.W. Visschers, R. van Grondelle, and S. Völker, Spectral hole burning and fluorescence line narrowing in subunits of the ligh-tharvesting complex LH1 of purple bacteria, J. Phys. Chem. B 103(44), 9770–9776 (1999),
http://dx.doi.org/10.1021/jp990805x
[22] T. Renger and R.A. Marcus, On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra, J. Chem. Phys. 116(22), 9997–10019 (2002),
http://dx.doi.org/10.1063/1.1470200
[23] J.N. Sturgis and B. Robert, Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes, J. Mol. Biol. 238(3), 445–454 (1994),
http://dx.doi.org/10.1006/jmbi.1994.1303
[24] S. Jang, J. Cao, and R.J. Silbey, On the temperature dependence of molecular line shapes due to linearly coupled phonon bands, J. Phys. Chem. B 106(3), 8313–8317 (2002),
http://dx.doi.org/10.1021/jp0208440
[25] G.D. Scholes, I.R. Gould, R.J. Cogdell, and G.R. Fleming, Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila, J. Phys. Chem. B 103, 2543–2553 (1999),
http://dx.doi.org/10.1021/jp9839753
[26] A. Freiberg, J.A. Jackson, S. Lin, and N.W. Woodbury, Subpicosecond pump-supercontinuum probe spectroscopy of LH2 photosynthetic antenna proteins at low temperature, J. Phys. Chem. A 102(23), 4372–4380 (1998),
http://dx.doi.org/10.1021/jp980028l
[27] M. Rätsep, C.N. Hunter, J.D. Olsen, and A. Freiberg, Band structure and local dynamics of excitons in bacterial light-harvesting complexes revealed by spectrally selective spectroscopy, Photosynthesis Res. 86(1–2), 37–48 (2005),
http://dx.doi.org/10.1007/s11120-005-2749-8
[28] A.S. Davydov, Solid-State Theory (Nauka, Moscow, 1986) [in Russian]
[29] R. van Grondelle, H.J.M. Kramer, and C.P. Rijgersberg, Energy transfer in the B800–850–carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulata, Biochim. Biophys. Acta 682, 208–215 (1982),
http://dx.doi.org/10.1016/0005-2728(82)90100-1
[30] D. Rutkauskas, V. Novoderezhkin, R.J. Cogdell, and R. van Grondelle, Fluorescence spectroscopy of conformational changes of single LH2 complexes, Biophys. J. 88(1), 422–435 (2005),
https://doi.org/10.1529/biophysj.104.048629
[31] A. Freiberg, M. Rätsep, K. Timpmann, G. Trinkunas, and N. W. Woodbury, Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. J. Phys. Chem. B 107, 11510–11519 (2003),
http://dx.doi.org/10.1021/jp0344848
[32] K. Timpmann, A. Ellervee, T. Pullerits, R. Ruus, V. Sundstrom, and A. Freiberg, Short-range exciton couplings in LH2 photosynthetic antenna proteins studied by high hydrostatic pressure absorption spectroscopy, J. Phys. Chem. B 105(35), 8436–8444 (2001),
http://dx.doi.org/10.1021/jp003496f
[33] A. Gall, A. Ellervee, J.N. Sturgis, N.J. Fraser, R.J. Cogdell, A. Freiberg, and B. Robert, Membrane protein stability: High pressure effects on the structure and chromophore-binding properties of the light-harvesting complex LH2, Biochemistry 42(44), 13019–13026 (2003),
http://dx.doi.org/10.1021/bi0350351