[PDF]
http://dx.doi.org/10.3952/lithjphys.46117
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 39–46 (2006)
SESTIMATION OF THE SPECTRAL
DENSITY FUNCTION OF LH2 COMPLEXES FROM THE TEMPERATURE
DEPENDENCE OF THE ABSORPTION SPECTRA
O. Vrublevskajaa, V. Urbonienėb, G.
Trinkūnasa, L. Valkūnasa,c, A. Galld,
and B. Robertd
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: Oksana@ar.fi.lt
bDepartment of General Physics and Spectroscopy,
Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
cDepartment of Theoretical Physics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
dService de Biophysique des Prote’ines et des
Membranes, DBJC / CEA and CNRS / URA2096, C. E. A. Saclay, 91191
Gif-sur-Yvette Cedex, France
Received 2 December 2005
The spectral density function of a
bacteriochlorophyll molecule in its parametric form describing the
exciton coupling to the vibrational bath including the protein and
the solvent modes has been determined. This form of spectral
density is applied by simulating the temperature dependence of the
absorption spectra of the peripheral light harvesting complexes,
LH2, of the photosynthetic purple bacterium Rhodobacter
sphaeroides inserted into the polyvinyl alcohol film. It has
been found that the dynamic characteristics of broadening of both
absorption bands of LH2 with the maxima at 850 nm and 800 nm are
similar to those already obtained for the glycerol solution. The
static spectral inhomogeneity of LH2 in the polyvinyl alcohol
film, however, is much larger than in the glycerol solution. It is
concluded that the LH2 complex in the polyvinyl alcohol film with
increase of the temperature is subjected to compression, which is
the source of the additional static disorder.
Keywords: absorption spectra, Rhodobacter sphaeroides,
LH2, spectral density function, temperature dependence, glycerol,
polyvinyl alcohol
PACS: 71.35.-y, 71.35 Aa, 87.15 Aa, 87.15-v.
LH2 KOMPLEKSŲ SPEKTRINĖS TANKIO
FUNKCIJOS NUSTATYMAS, REMIANTIS SUGERTIES SPEKTRŲ TEMPERATŪRINIŲ
PRIKLAUSOMYBIŲ MATAVIMAIS
O. Vrublevskajaa, V. Urbonienėb, G.
Trinkūnasa, L. Valkūnasa,b, A. Gallc,
B. Robertc
aFizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
cService de Biophysique des Prote’ines et des
Membranes, C.E.A. Saclay, Prancūzija
Nustatyta bakteriochlorofilo molekulės
spektrinės tankio funkcijos, aprašančios eksitonų sąveiką su
visomis bakteriochlorofilo molekulių, baltymo ir tirpiklio
vibracinėmis modomis, parametrinė forma. Ši forma pritaikyta
periferinių šviesą surenkančių kompleksų LH2, išskirtų iš Rhodobacter
sphaeroides fotosintetinančių bakterijų, esančių
polivinilalkoholio plėvelėje, sugerties spektrų temperatūrinėms
priklausomybėms modeliuoti. Rasta, kad abiejų LH2 sugerties juostų
su maksimumais ties 850 ir 800 nm išplitimo dinaminės savybės
panašios į atitinkamas glicerolio buferio savybes. Tačiau
polivinilalkoholio plėvelėje LH2 spektrinis išplitimas dėl
statinės netvarkos yra daug didesnis negu glicerolio buferyje.
Galima daryti išvadą, kad polivinilalkoholio plėvelėje LH2
kompleksai kylant temperatūrai yra suspaudžiami, o tai lemia
papildomą statinę netvarką.
References / Nuorodos
[1] G.R. Fleming and R. van Grondelle, Femtosecond spectroscopy of
photosynthetic light-harvesting systems, Curr. Opinion Struct. Biol.
7, 738–748 (1997),
http://dx.doi.org/10.1016/S0959-440X(97)80086-3
[2] G. McDermott, S.M. Prince, A.A. Freer, A.M.
Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W. Isaacs,
Crystal structure of an integral membrane light-harvesting complex
from photosynthetic bacteria, Nature 374, 517–521 (1995),
http://dx.doi.org/10.1038/374517a0
[3] V. Zazubovich, R. Jankowiak, and G.J. Small, On B800–B800 energy
transfer in the LH2 complex of purple bacteria, J. Lumin. 98,
123–129 (2002),
http://dx.doi.org/10.1016/S0022-2313(02)00260-0
[4] X. Hu, T. Ritz, A. Damjanovic, and K. Schulten, Pigment
organization and transfer of electronic excitation in the
photosynthetic unit of purple bacteria, J. Phys. Chem. B 101 (19),
3854–3871 (1997),
http://dx.doi.org/10.1021/jp963777g
[5] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic
Excitons (World Scientific, Singapore, 2000),
http://dx.doi.org/10.1142/3609
[6] F.G. Parak, Physical aspects of protein dynamics, Rep. Prog.
Phys. 66, 103–129 (2003),
http://dx.doi.org/10.1088/0034-4885/66/2/201
[7] V. Urboniene, O. Vrublevskaja, A. Gall, G. Trinkunas, B. Robert,
and L. Valkunas, Temperature broadening of LH2 absorption in
glycerol solution, Photosynthesis Res. 86(1–2), 49–59
(2005),
http://dx.doi.org/10.1007/s11120-005-2748-9
[8] T. Walz, S.J. Jamieson, C.M. Bowers, P.A. Bullough, and C.N.
Hunter, Projection structures of three photosynthetic complexes from
Rhodobacter sphaeroides:LH2 at 6 Å, LH1 and RC-LH1 at 25 Å,
J. Mol. Biol. 282(4), 833–845 (1998),
http://dx.doi.org/10.1006/jmbi.1998.2050
[9] P. Braun, A.P. Végh, M. von Jan, B. Strohmann, C.N. Hunter, B.
Robert, and H. Scheer, Identification of intramembrane hydrogen
bonding between 131 keto group of bacteriochlorophyll and
serine residue α27 in the LH2 light-harvesting complex,
Biochim. Biophys. Acta 1607(1), 19–26 (2003),
http://dx.doi.org/10.1016/j.bbabio.2003.08.004
[10] A. Freer, S. Prince, K. Sauer, M. Papiz, A.
Hawthornthwaite-Lawless, G. McDermott, R. Cogdell, and N.W. Isaacs,
Pigment–pigment interactions and energy transfer in the antenna
complex of the photosynthetic bacterium Rhodopseudomonas
acidophila, Structure 4(4), 449–462 (1996),
http://dx.doi.org/10.1016/S0969-2126(96)00050-0
[11] I. Yu, Electrodeless measurement of RF dielectric constant and
loss, Meas. Sci. Technol. 4, 344–348 (1993),
http://dx.doi.org/10.1088/0957-0233/4/3/013
[12] A.S. Davydov, Theory of Molecular Excitons (Plenum
Press, New York, 1971),
http://dx.doi.org/10.1007/978-1-4899-5169-4
[13] M. Lax, The Franck–Condon principle and its application to
crystals, J. Chem. Phys. 20, 1752–1760 (1952),
http://dx.doi.org/10.1063/1.1700283
[14] S. Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford, New York, 1995)
[15] I.S. Osadko, Selective Spectroscopy of Single Molecules
(Springer, Berlin–New York, 2003),
http://dx.doi.org/10.1007/978-3-662-05248-8
[16] V. May and O. Kühn, Charge and Energy Transfer Dynamics in
Molecular Systems (Wiley–VCH, Berlin, 2004),
http://dx.doi.org/10.1002/9783527602575
[17] T. Meier, V. Chernyak, and S. Mukamel, Femtosecond phonon
echoes in molecular aggregates, J. Chem. Phys. 107(21), 8759–8780
(1997),
http://dx.doi.org/10.1063/1.475169
[18] W.M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, Simulation
of three-pulse-echo and fluorescence depolarization in
photosynthetic aggregates, Phil. Trans. R. Soc. London, Ser. A 356,
405–419 (1998),
http://dx.doi.org/10.1098/rsta.1998.0173
[19] S. Jang and R.J. Silbey, Single complex line shapes of the B850
band of LH2, J. Chem. Phys. 118(20), 9324–9336 (2003),
http://dx.doi.org/10.1063/1.1569240
[20] L.D. Book, A.E. Ostafin, N. Ponomarenko, J.R. Norris, and N.F.
Scherer, Exciton delocalization and initial dephasing dynamics of
purple bacterial LH2, J. Phys. Chem. B 104(34), 8295–8307
(2000),
http://dx.doi.org/10.1021/jp000485d
[21] T.M.H. Creemers, C.A. de Caro, R.W. Visschers, R. van
Grondelle, and S. Völker, Spectral hole burning and fluorescence
line narrowing in subunits of the ligh-tharvesting complex LH1 of
purple bacteria, J. Phys. Chem. B 103(44), 9770–9776 (1999),
http://dx.doi.org/10.1021/jp990805x
[22] T. Renger and R.A. Marcus, On the relation of protein dynamics
and exciton relaxation in pigment–protein complexes: An estimation
of the spectral density and a theory for the calculation of optical
spectra, J. Chem. Phys. 116(22), 9997–10019 (2002),
http://dx.doi.org/10.1063/1.1470200
[23] J.N. Sturgis and B. Robert, Thermodynamics of membrane
polypeptide oligomerization in light-harvesting complexes and
associated structural changes, J. Mol. Biol. 238(3), 445–454
(1994),
http://dx.doi.org/10.1006/jmbi.1994.1303
[24] S. Jang, J. Cao, and R.J. Silbey, On the temperature dependence
of molecular line shapes due to linearly coupled phonon bands, J.
Phys. Chem. B 106(3), 8313–8317 (2002),
http://dx.doi.org/10.1021/jp0208440
[25] G.D. Scholes, I.R. Gould, R.J. Cogdell, and G.R. Fleming, Ab
initio molecular orbital calculations of electronic couplings
in the LH2 bacterial light-harvesting complex of Rps. acidophila,
J. Phys. Chem. B 103, 2543–2553 (1999),
http://dx.doi.org/10.1021/jp9839753
[26] A. Freiberg, J.A. Jackson, S. Lin, and N.W. Woodbury,
Subpicosecond pump-supercontinuum probe spectroscopy of LH2
photosynthetic antenna proteins at low temperature, J. Phys. Chem. A
102(23), 4372–4380 (1998),
http://dx.doi.org/10.1021/jp980028l
[27] M. Rätsep, C.N. Hunter, J.D. Olsen, and A. Freiberg, Band
structure and local dynamics of excitons in bacterial
light-harvesting complexes revealed by spectrally selective
spectroscopy, Photosynthesis Res. 86(1–2), 37–48 (2005),
http://dx.doi.org/10.1007/s11120-005-2749-8
[28] A.S. Davydov, Solid-State Theory (Nauka, Moscow, 1986)
[in Russian]
[29] R. van Grondelle, H.J.M. Kramer, and C.P. Rijgersberg, Energy
transfer in the B800–850–carotenoid light-harvesting complex of
various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas
capsulata, Biochim. Biophys. Acta 682, 208–215 (1982),
http://dx.doi.org/10.1016/0005-2728(82)90100-1
[30] D. Rutkauskas, V. Novoderezhkin, R.J. Cogdell, and R. van
Grondelle, Fluorescence spectroscopy of conformational changes of
single LH2 complexes, Biophys. J. 88(1), 422–435 (2005),
https://doi.org/10.1529/biophysj.104.048629
[31] A. Freiberg, M. Rätsep, K. Timpmann, G. Trinkunas, and N. W.
Woodbury, Self-trapped excitons in LH2 antenna complexes between 5 K
and ambient temperature. J. Phys. Chem. B 107, 11510–11519
(2003),
http://dx.doi.org/10.1021/jp0344848
[32] K. Timpmann, A. Ellervee, T. Pullerits, R. Ruus, V. Sundstrom,
and A. Freiberg, Short-range exciton couplings in LH2 photosynthetic
antenna proteins studied by high hydrostatic pressure absorption
spectroscopy, J. Phys. Chem. B 105(35), 8436–8444 (2001),
http://dx.doi.org/10.1021/jp003496f
[33] A. Gall, A. Ellervee, J.N. Sturgis, N.J. Fraser, R.J. Cogdell,
A. Freiberg, and B. Robert, Membrane protein stability: High
pressure effects on the structure and chromophore-binding properties
of the light-harvesting complex LH2, Biochemistry 42(44),
13019–13026 (2003),
http://dx.doi.org/10.1021/bi0350351