[PDF]
http://dx.doi.org/10.3952/lithjphys.46201
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 185–190 (2006)
SOL–GEL SYNTHESIS AND XPS
CHARACTERIZATION OF VANADIUM OXIDE BRONZES ∗
V. Bondarenkaa, S. Grebinskija, Z. Martūnasa,
S. Mickevičiusa, H. Tvardauskasa, S.
Kačiulisb, L. Pandolfib, V. Volkovc,
and N. Podvalnaiac
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute for the Study of Nanostructured
Materials (ISMN–CNR), P. O. Box 10, I-00016 Monterotondo Staz
(RM), Italy
cInstitute of Solid State Chemistry,
Pervomaiskaya 91, 620219 Yekaterinburg, Russia
Received 2 December 2005
The results of synthesis of the vanadium oxide
bronzes NaV2O5, K4.3V6O16.2,
and Rb4.4V6O16.1 are presented.
The synthesis process can be described by three steps: the 1st –
production of the sol by dissolving the necessary materials in H2O2
solution, the 2nd – fabrication of the gel by heating up to 350 K,
and the 3rd – heating up to 580–780 K for the water removal from
the gel. The chemical composition of obtained bronzes was examined
by using X-ray photoelectron spectroscopy (XPS) method.
Keywords: vanadium oxides, bronzes, sol–gel, XPS
PACS: 68.47Gh, 81.20Fw, 82.80Pv
∗ The report presented at the 36th Lithuanian National
Physics Conference, 16–18 June 2005, Vilnius, Lithuania
VANADŽIO OKSIDŲ BRONZŲ
ZOLIS–GELIS SINTEZĖ IR RENTGENO FOTOELEKTRONINIAI SPEKTRAI
. Bondarenkaa, S. Grebinskija, Z. Martūnasa,
S. Mickevičiusa, H. Tvardauskasa, S.
Kačiulisb, L. Pandolfib, V. Volkovc,
N. Podvalnaiac
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanosandaros medžiagų tyrimo institutas,
Monterotondo Stac, Italija
bKietojo kūno chemijos institutas,
Jekaterinburgas, Rusija
Ploni vanadžio oksidų bronzų NaV2O5,
K4,3V6O16,2 ir Rb4,4V6O16,1
sluoksniai buvo pagaminti naudojant zolio–gelio technologiją.
Sluoksnių cheminei sudėčiai ir metalų jonų valentingumui nustatyti
buvo naudojama Rentgeno fotoelektronų spektroskopijos (RFS)
metodika. Bronzų gamybą galima suskirstyti į tris etapus: 1) zolio
gamyba, tirpinant reikalingas medžiagas (V2O5
ir Na2SO4 arba rubidžio ar kalio
metavanadatus kartu su vanadilo sulfatu) vandenilio perokside; 2)
pagamintojo zolio kaitinimas iki 350 K; 3) pagamintojo gelio
kaitinimas iki 580–780 K, siekiant pašalinti vandens molekules iš
gelio, t. y. bronzų sintezė.
V2O5, Na2SO4, V–Na–O
gelio ir bronzos RFS analizė parodė, kad pagrindinės V 2p
ir Na 1s RFS smailės bronzoje yra pasislinkusios, palyginus
su pradinėmis medžiagomis. Tai liudija, kad cheminiai ryšiai tarp
vanadžio, natrio ir deguonies bronzoje skiriasi nuo atitinkamų
ryšių pradinėse medžiagose, tai yra susintetinta bronza nėra
paprastas medžiagų mišinys, o yra naujas cheminis junginys. Sieros
smailė aptikta tik Na–V–O gelyje, bet jos nėra bronzoje.
Iš RFS analizės rezultatų matyti, kad rubidžio– ir kalio–vanadžio
oksidinėse bronzose yra stebima Rb ir K segregacija bei vandens
garų ir anglies sugertis bandinių paviršiuje. Jeigu Rb–V–O bronzos
paviršius labiau sugeria vandenį, tai kalio–vanadžio bronzoje dėl
anglies sugerties susidaro K2CO3.
Rubidžio–vanadžio bronzoje po bandinių paviršiaus apšaudymo Ar+
jonais šalia V5+ ir V4+ atsiranda ir V3+
jonai, o kalio–vanadžio bronzoje po apšaudymo visai išnyksta V5+
ir lieka tik V4+ ir V3+ jonai. Tai liudija
apie silpnesnį V–O ryšį K–V–O bronzoje.
References / Nuorodos
[1] J. Livage and D. Ganguli, Sol–gel electrochromic coatings and
devices: A review, Sol. Energy Mater. Sol. Cells 68(3–4),
365–381 (2001),
http://dx.doi.org/10.1016/S0927-0248(00)00369-X
[2] M. Miller, J. Farcy, J.P. Pereira-Ramos, E.M. Sabbar, M.E. De
Ray, and J.P. Besse, A new hydrated sodium vanadium bronze as Li
insertion compound, Solid State Ionics 112(3–4), 319–327
(1998),
http://dx.doi.org/10.1016/S0167-2738(98)00202-1
[3] G. Gregoire, P. Souban, J. Farcy, J.P. Preira-Ramos, J.C. Badot,
and N. Baffier, Electrochemical lithium insertion in the hexagonal
cesium vanadium bronze Cs0.33V2O5,
J. Power Sources 81–82, 612–615 (1999),
http://dx.doi.org/10.1016/S0378-7753(98)00229-8
[4] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G.
Zakharova, Thin films of polyvanadium–molybdenum acid as starting
materials for humidity sensors, Sensors Actuators B 28(3),
227–231 (1995),
http://dx.doi.org/10.1016/0925-4005(95)01726-7
[5] J. Livage, Optical and electrical properties of vanadium oxides
synthesized from alcoxides, Coord. Chem. Rev. 190–192,
391–403 (1999),
http://dx.doi.org/10.1016/S0010-8545(99)00096-X
[6] K. Kobayashi, T. Mizokawa, A. Fujimori, M. Isobe, and Y. Ueda,
Angle resolved photoemission study of the spin-Peierls system α′-NaV2O5,
J. Electron Spectrosc. Related Phenom. 92(1–3), 87–90
(1998),
http://dx.doi.org/10.1016/S0368-2048(98)00106-6
[7] S. Schmidt, W. Palme, B. Lüthi, W. Weiden, R. Hauptmann, and C.
Geibel, Magnetic resonance in the spin-Peierls compound α′-NaV2O5,
Phys. Rev. B 57(5), 2687–2689 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.2687
[8] M. Iton, N. Akimoto, T. Tsuchiya, H. Yamada, M. Isobe, and Y.
Ueda, 51V NMR study of charge ordering in AV6O15
(A = Ca, Na and Ag), Physica B 281–282, 606–607 (2000),
http://dx.doi.org/10.1016/S0921-4526(99)01036-4
[9] V.L. Volkov, Introduction Phases Based on the Vanadium
Oxides (Sverdlovsk, 1987) 179 p. [in Russian]
[10] F. Zhang, P. Zavalij, and M.S. Whittingham, Hydrothermal
synthesis and electrochemistry of a manganese vanadium oxide, γ-MnV2O5,
Electrochem. Commun. 1(11), 564–567 (1999),
http://dx.doi.org/10.1016/S1388-2481(99)00113-7
[11] A. Česnys, V. Bondarenka, A. Oginskis, A. Latyshenka, and V.
Lisauskas, Neodymium–vanadium oxide bronze thin films, J. Solid
State Chem. 113(2), 438–440 (1994),
http://dx.doi.org/10.1006/jssc.1994.1392
[12] J.-J. Legendre and J. Livage, Vanadium pentoxide gels: I.
Structural study by electron diffraction, J. Colloid Interface Sci.
94(1), 75–83 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90236-9
[13] J.-J. Legendre, P. Aldebert, N. Baffier, and J. Livage,
Vanadium pentoxide gels: II. Structural study by x-ray diffraction,
J. Colloid Interface Sci. 94(1), 84–89 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90237-0
[14] M. Inagaki, T. Watanabe, and A. Shimizu, New process for the
preparation of vanadium oxide xerogels, Solid State Ionics 86–88(2),
853–857 (1996),
http://dx.doi.org/10.1016/0167-2738(96)00193-2
[15] V. Volkov, G. Zakharova, and V. Bondarenka, Simple and
Modified Xerogels of Vanadium Polyvanadates (Yekaterinburg,
2001) 194 p. [in Russian]
[16] G. Hopfengärtner, D. Borgman, I. Rademacher, G. Wedler, E.
Hums, and G.W. Spitznagell, XPS studies of oxidic model catalysts:
Internal standards and oxidation numbers, J. Electron Spectrosc.
Related Phenom. 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[17] V.I. Nefedov, D. Gati, B.E. Dzurinskii, N.P. Sergushin, and
Ya.V. Salyn, Simple and coordination compounds. An X-ray
photoelectron spectroscopic study of certain oxides, Russ. J. Inorg.
Chem. 20, 2307–2314 (1975)
[18] A.M. Beccaria, G. Poggi, and G. Castello, Influence of passive
film composition and sea water pressure on resistance to localized
corrosion of some stainless steels in sea water, Br. Corrosion J. 30(4),
283–287 (1995),
http://dx.doi.org/10.1179/bcj.1995.30.4.283
[19] D. Rats, L. Vandenbulcke, R. Herbin, R. Erre, V. Serin, and J.
Sevely, Characterization of ion-beam-deposited diamond-like carbon
films, Thin Solid Films 270(1–2), 177–176 (1995),
http://dx.doi.org/10.1016/0040-6090(95)06913-5
[20] J.F. Mouder, W.F. Stiskle, P.E. Sobol, and K.D. Bomben, Handbook
of X-ray Photoelectron Spectroscopy (Physical Electroics, Eden
Praire, Minnesota, USA, 1995) 261 p.
[21] D. Briggs and M.P. Seah, Practical Surface Analysis,
Vol. 1 (Wiley, New York, 1990) 638 p.
[22] Ph. De Donato, C. Mustin, R. Benoit, and R. Erre, Spatial
distribution of iron and sulphur species on the surface of pyrite,
Appl. Surf. Sci. 68(1), 81–93 (1993),
http://dx.doi.org/10.1016/0169-4332(93)90217-Y
[23] D. Brion, Etude par spectroscopie de photoelectrons de la
degradation superficielle de FeS2, CuFeS2, ZnS
et PbS a láie et dans léau, Appl. Surf. Sci. 5(2), 133–152
(1980),
http://dx.doi.org/10.1016/0378-5963(80)90148-8
[24] B. Stypula and J. Stoch, The characterization of passive films
on chromium electrodes by XPS, Corrosion Sci. 36(12),
2159–2167 (1994),
http://dx.doi.org/10.1016/0010-938X(94)90014-0
[25] P.Y. Jouan, M.C. Peignot, Ch. Cardinald, and G. Lemperiere,
Characterisation of the TiN / Si interface polyfacetted
single-crystal electrodes in a chloroplatinic acid solution, Appl.
Surf. Sci. 68(4), 595–603 (1993),
http://dx.doi.org/10.1016/0169-4332(93)90240-C