[PDF]    http://dx.doi.org/10.3952/lithjphys.46201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 185–190 (2006)


SOL–GEL SYNTHESIS AND XPS CHARACTERIZATION OF VANADIUM OXIDE BRONZES
V. Bondarenkaa, S. Grebinskija, Z. Martūnasa, S. Mickevičiusa, H. Tvardauskasa, S. Kačiulisb, L. Pandolfib, V. Volkovc, and N. Podvalnaiac
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute for the Study of Nanostructured Materials (ISMN–CNR), P. O. Box 10, I-00016 Monterotondo Staz (RM), Italy
cInstitute of Solid State Chemistry, Pervomaiskaya 91, 620219 Yekaterinburg, Russia

Received 2 December 2005

The results of synthesis of the vanadium oxide bronzes NaV2O5, K4.3V6O16.2, and Rb4.4V6O16.1 are presented. The synthesis process can be described by three steps: the 1st – production of the sol by dissolving the necessary materials in H2O2 solution, the 2nd – fabrication of the gel by heating up to 350 K, and the 3rd – heating up to 580–780 K for the water removal from the gel. The chemical composition of obtained bronzes was examined by using X-ray photoelectron spectroscopy (XPS) method.
Keywords: vanadium oxides, bronzes, sol–gel, XPS
PACS: 68.47Gh, 81.20Fw, 82.80Pv
The report presented at the 36th Lithuanian National Physics Conference, 16–18 June 2005, Vilnius, Lithuania


VANADŽIO OKSIDŲ BRONZŲ ZOLIS–GELIS SINTEZĖ IR RENTGENO FOTOELEKTRONINIAI SPEKTRAI
. Bondarenkaa, S. Grebinskija, Z. Martūnasa, S. Mickevičiusa, H. Tvardauskasa, S. Kačiulisb, L. Pandolfib, V. Volkovc, N. Podvalnaiac
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanosandaros medžiagų tyrimo institutas, Monterotondo Stac, Italija
bKietojo kūno chemijos institutas, Jekaterinburgas, Rusija

Ploni vanadžio oksidų bronzų NaV2O5, K4,3V6O16,2 ir Rb4,4V6O16,1 sluoksniai buvo pagaminti naudojant zolio–gelio technologiją. Sluoksnių cheminei sudėčiai ir metalų jonų valentingumui nustatyti buvo naudojama Rentgeno fotoelektronų spektroskopijos (RFS) metodika. Bronzų gamybą galima suskirstyti į tris etapus: 1) zolio gamyba, tirpinant reikalingas medžiagas (V2O5 ir Na2SO4 arba rubidžio ar kalio metavanadatus kartu su vanadilo sulfatu) vandenilio perokside; 2) pagamintojo zolio kaitinimas iki 350 K; 3) pagamintojo gelio kaitinimas iki 580–780 K, siekiant pašalinti vandens molekules iš gelio, t. y. bronzų sintezė.
V2O5, Na2SO4, V–Na–O gelio ir bronzos RFS analizė parodė, kad pagrindinės V 2p ir Na 1s RFS smailės bronzoje yra pasislinkusios, palyginus su pradinėmis medžiagomis. Tai liudija, kad cheminiai ryšiai tarp vanadžio, natrio ir deguonies bronzoje skiriasi nuo atitinkamų ryšių pradinėse medžiagose, tai yra susintetinta bronza nėra paprastas medžiagų mišinys, o yra naujas cheminis junginys. Sieros smailė aptikta tik Na–V–O gelyje, bet jos nėra bronzoje.
Iš RFS analizės rezultatų matyti, kad rubidžio– ir kalio–vanadžio oksidinėse bronzose yra stebima Rb ir K segregacija bei vandens garų ir anglies sugertis bandinių paviršiuje. Jeigu Rb–V–O bronzos paviršius labiau sugeria vandenį, tai kalio–vanadžio bronzoje dėl anglies sugerties susidaro K2CO3. Rubidžio–vanadžio bronzoje po bandinių paviršiaus apšaudymo Ar+ jonais šalia V5+ ir V4+ atsiranda ir V3+ jonai, o kalio–vanadžio bronzoje po apšaudymo visai išnyksta V5+ ir lieka tik V4+ ir V3+ jonai. Tai liudija apie silpnesnį V–O ryšį K–V–O bronzoje.


References / Nuorodos


[1] J. Livage and D. Ganguli, Sol–gel electrochromic coatings and devices: A review, Sol. Energy Mater. Sol. Cells 68(3–4), 365–381 (2001),
http://dx.doi.org/10.1016/S0927-0248(00)00369-X
[2] M. Miller, J. Farcy, J.P. Pereira-Ramos, E.M. Sabbar, M.E. De Ray, and J.P. Besse, A new hydrated sodium vanadium bronze as Li insertion compound, Solid State Ionics 112(3–4), 319–327 (1998),
http://dx.doi.org/10.1016/S0167-2738(98)00202-1
[3] G. Gregoire, P. Souban, J. Farcy, J.P. Preira-Ramos, J.C. Badot, and N. Baffier, Electrochemical lithium insertion in the hexagonal cesium vanadium bronze Cs0.33V2O5, J. Power Sources 81–82, 612–615 (1999),
http://dx.doi.org/10.1016/S0378-7753(98)00229-8
[4] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, Thin films of polyvanadium–molybdenum acid as starting materials for humidity sensors, Sensors Actuators B 28(3), 227–231 (1995),
http://dx.doi.org/10.1016/0925-4005(95)01726-7
[5] J. Livage, Optical and electrical properties of vanadium oxides synthesized from alcoxides, Coord. Chem. Rev. 190–192, 391–403 (1999),
http://dx.doi.org/10.1016/S0010-8545(99)00096-X
[6] K. Kobayashi, T. Mizokawa, A. Fujimori, M. Isobe, and Y. Ueda, Angle resolved photoemission study of the spin-Peierls system α′-NaV2O5, J. Electron Spectrosc. Related Phenom. 92(1–3), 87–90 (1998),
http://dx.doi.org/10.1016/S0368-2048(98)00106-6
[7] S. Schmidt, W. Palme, B. Lüthi, W. Weiden, R. Hauptmann, and C. Geibel, Magnetic resonance in the spin-Peierls compound α′-NaV2O5, Phys. Rev. B 57(5), 2687–2689 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.2687
[8] M. Iton, N. Akimoto, T. Tsuchiya, H. Yamada, M. Isobe, and Y. Ueda, 51V NMR study of charge ordering in AV6O15 (A = Ca, Na and Ag), Physica B 281–282, 606–607 (2000),
http://dx.doi.org/10.1016/S0921-4526(99)01036-4
[9] V.L. Volkov, Introduction Phases Based on the Vanadium Oxides (Sverdlovsk, 1987) 179 p. [in Russian]
[10] F. Zhang, P. Zavalij, and M.S. Whittingham, Hydrothermal synthesis and electrochemistry of a manganese vanadium oxide, γ-MnV2O5, Electrochem. Commun. 1(11), 564–567 (1999),
http://dx.doi.org/10.1016/S1388-2481(99)00113-7
[11] A. Česnys, V. Bondarenka, A. Oginskis, A. Latyshenka, and V. Lisauskas, Neodymium–vanadium oxide bronze thin films, J. Solid State Chem. 113(2), 438–440 (1994),
http://dx.doi.org/10.1006/jssc.1994.1392
[12] J.-J. Legendre and J. Livage, Vanadium pentoxide gels: I. Structural study by electron diffraction, J. Colloid Interface Sci. 94(1), 75–83 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90236-9
[13] J.-J. Legendre, P. Aldebert, N. Baffier, and J. Livage, Vanadium pentoxide gels: II. Structural study by x-ray diffraction, J. Colloid Interface Sci. 94(1), 84–89 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90237-0
[14] M. Inagaki, T. Watanabe, and A. Shimizu, New process for the preparation of vanadium oxide xerogels, Solid State Ionics 86–88(2), 853–857 (1996),
http://dx.doi.org/10.1016/0167-2738(96)00193-2
[15] V. Volkov, G. Zakharova, and V. Bondarenka, Simple and Modified Xerogels of Vanadium Polyvanadates (Yekaterinburg, 2001) 194 p. [in Russian]
[16] G. Hopfengärtner, D. Borgman, I. Rademacher, G. Wedler, E. Hums, and G.W. Spitznagell, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, J. Electron Spectrosc. Related Phenom. 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[17] V.I. Nefedov, D. Gati, B.E. Dzurinskii, N.P. Sergushin, and Ya.V. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Russ. J. Inorg. Chem. 20, 2307–2314 (1975)
[18] A.M. Beccaria, G. Poggi, and G. Castello, Influence of passive film composition and sea water pressure on resistance to localized corrosion of some stainless steels in sea water, Br. Corrosion J. 30(4), 283–287 (1995),
http://dx.doi.org/10.1179/bcj.1995.30.4.283
[19] D. Rats, L. Vandenbulcke, R. Herbin, R. Erre, V. Serin, and J. Sevely, Characterization of ion-beam-deposited diamond-like carbon films, Thin Solid Films 270(1–2), 177–176 (1995),
http://dx.doi.org/10.1016/0040-6090(95)06913-5
[20] J.F. Mouder, W.F. Stiskle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electroics, Eden Praire, Minnesota, USA, 1995) 261 p.
[21] D. Briggs and M.P. Seah, Practical Surface Analysis, Vol. 1 (Wiley, New York, 1990) 638 p.
[22] Ph. De Donato, C. Mustin, R. Benoit, and R. Erre, Spatial distribution of iron and sulphur species on the surface of pyrite, Appl. Surf. Sci. 68(1), 81–93 (1993),
http://dx.doi.org/10.1016/0169-4332(93)90217-Y
[23] D. Brion, Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a láie et dans léau, Appl. Surf. Sci. 5(2), 133–152 (1980),
http://dx.doi.org/10.1016/0378-5963(80)90148-8
[24] B. Stypula and J. Stoch, The characterization of passive films on chromium electrodes by XPS, Corrosion Sci. 36(12), 2159–2167 (1994),
http://dx.doi.org/10.1016/0010-938X(94)90014-0
[25] P.Y. Jouan, M.C. Peignot, Ch. Cardinald, and G. Lemperiere, Characterisation of the TiN / Si interface polyfacetted single-crystal electrodes in a chloroplatinic acid solution, Appl. Surf. Sci. 68(4), 595–603 (1993),
http://dx.doi.org/10.1016/0169-4332(93)90240-C