[PDF]
http://dx.doi.org/10.3952/lithjphys.46202
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 147–152 (2006)
EXCITATION OF POLARIZED ATOMS BY
FAST ELECTRONS
A. Kupliauskienė, M. Šeimys, and R. Valavičius
Institute of Theoretical Physics and Astronomy of Vilnius
University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: akupl@itpa.lt
Received 8 December 2005
The general expression for excitation
cross-section of polarized atoms by fast electrons is derived by
using the methods of the theory of an atom adapted for
polarization in the plane wave Born approximation. In describing
the alignment of excited atoms, the special cases of the general
expression are obtained for both the polarized and non-polarized
atoms and for the magnetic dichroism of the total ionization
cross-section of polarized atoms.
Keywords: excitation of atoms by electron impact,
polarization, angular distribution
PACS: 34.80.Dp, 29.25.Pj, 29.25.Lg
POLIARIZUOTŲ ATOMŲ SUŽADINIMAS
GREITAISIAIS ELEKTRONAIS
A. Kupliauskienė, M. Šeimys, R. Valavičius
VU Teorinės fizikos ir astronomijos institutas, Vilnius,
Lietuva
Taikant atomo teorijos matematinį aparatą,
Borno artinyje gautos poliarizuotų atomų sužadinimo greitais
nepoliarizuotais elektronais diferencialinio skerspjūvio
bendrosios išraiškos. Jos patogios aiškinant atskirus
poliarizacijos atvejus, sutinkamus konkrečiuose eksperimentuose,
bei gaunant juos aprašančių diferencialinių skerspjūvių išraiškas.
Gautos poliarizuotų atomų sužadinimo nepoliarizuotais elektronais
pilnutinio skerspjūvio magnetinio dichroizmo išraiška bei
nepoliarizuotais elektronais sužadinto atomo rikiavimo išraiška
kaip atskiri bendrosios išraiškos atvejai.
References / Nuorodos
[1] A. Boileau, M. von Hellermann, W. Mandl, H.P. Summers, H.
Weisen, and A. Zinoviev, Observation of motional Stark features in
the Balmer spectrum of deuterium in the JET plasma, J. Phys. B 22,
L145–L152 (1989).
http://dx.doi.org/10.1088/0953-4075/22/7/002
[2] W. Mandl, R.C. Wolf, M. von Hellermann, and H.P. Summers, Beam
emission spectroscopy as a comprehensive plasma diagnostic tool,
Plasma Phys. Controlled Fusion 35, 1373–1394 (1993).
http://dx.doi.org/10.1088/0741-3335/35/10/003
[3] A. Kupliauskienė, Atomic theory methods for the polarization of
photon and electron interactions with atoms, Lithuanian J. Phys. 44,
199–218 (2004).
http://dx.doi.org/10.3952/lithjphys.44303
[4] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, General
expression of the photoionization cross section of an atom in
polarized LS state, Lithuanian J. Phys. 40, 311–320
(2000)
[5] A. Kupliauskienė, N. Rakštikas, and V. Tutlys, Polarization
studies in the photoionization of atoms using a graphical technique,
J. Phys. B 34, 1783–1803 (2001).
http://dx.doi.org/10.1088/0953-4075/34/9/314
[6] A. Kupliauskienė, Photoexcitation of polarized atoms by
polarized radiation, Lithuanian J. Phys. 44, 17–26 (2004).
http://dx.doi.org/10.3952/lithjphys.44102
[7] A. Kupliauskienė and K. Glemža, General expression for
ionization cross-section of polarized atoms by polarized electrons,
Lithuanian J. Phys. 43, 89–97 (2003)
[8] A. Kupliauskienė and V. Tutlys, Angular distribution of
radiation following photoionization of polarized atoms, Physica
Scripta 70, 241–250 (2004).
http://dx.doi.org/10.1238/Physica.Regular.070a00241
[9] A. Kupliauskienė and V. Tutlys, Application of graphical
techique for Auger decay following photoionization of atoms, Physica
Scripta 67, 290–300 (2003).
http://dx.doi.org/10.1238/Physica.Regular.067a00290
[10] A. Kupliauskienė, Investigation of fluorescence radiation
following radiative recombination of ions and electrons, Nucl.
Instrum. Methods B 235, 252–256 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.03.184
[11] A. Kupliauskienė and V. Tutlys, General expression for the
dielectronic recombination cross section of polarized ions with
polarized electrons, Nucl. Instrum. Methods B 235, 257–260
(2005).
http://dx.doi.org/10.1016/j.nimb.2005.03.185
[12] V.V. Balashov, A.N. Grum-Grzhimailo, and N.M. Kabachnik, Polarization
and Correlation Phenomena in Atomic Collisions. A Practical Theory
Course (Kluwer, New York, 2000).
http://dx.doi.org/10.1007/978-1-4757-3228-3
[13] E.G. Berezhko and N.M. Kabachnik, Theoretical study of
inner-shell alignment of atoms in electron impact ionization:
Angular distribution and polarization of x-rays and Auger electrons,
J. Phys. B 10, 2467–2477 (1977).
http://dx.doi.org/10.1088/0022-3700/10/12/025
[14] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, 2nd
ed. (Pergamon, Oxford, 1965)
[15] Handbook of Mathematical Functions, with Formulas, Graphs,
and Mathematical Tables, eds. M. Abramovitz and I.A. Stegun,
National Bureau of Standards Applied Mathematics Series 55 (Commerce
Dept., NBS, 1964)
[16] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988).
http://dx.doi.org/10.1142/0270
[17] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum
in Quantum Mechanics (Mintis, Vilnius, 1965) [in Russian]
[18] M. Inokuti, Inelastic collisions of fast charged particles with
atoms and molecules – The Bethe theory revisited, Rev. Mod. Phys. 43,
297–347 (1971).
http://dx.doi.org/10.1103/RevModPhys.43.297