[PDF]    http://dx.doi.org/10.3952/lithjphys.46203

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 153–161 (2006)


ANOTHER FORM OF QUASI-RELATIVISTIC HARTREE–FOCK EQUATIONS
P. Bogdanovich and O. Rancova
Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavlas@itpa.lt

Received 9 December 2005

The present work is a continuation of the development of techniques for solving the quasi-relativistic Hartree–Fock equations. The equations were formed anew out of Dirac–Hartree–Fock equations in the shape that allowed one to use the conventional rather accurate self-consistent field potential instead of a simplified effective potential. The method is implemented in computer programs and the test results are presented for some ions of the Be, Ne, and Ar isoelectronic sequences. The results are in good coincidence with the results obtained by solving the relativistic Dirac–Hartree–Fock equations.
Keywords: quasi-relativistic Hartree–Fock equations
PACS: 31.15.Ne, 21.10.Ft


KITAS KVAZIRELIATYVISTINIŲ HARTRIO IR FOKO LYGČIŲ PAVIDALAS
. P. Bogdanovičius, O. Rancova
VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Toliau plėtojama kvazireliatyvistinių Hartrio (Hartree) ir Foko (Fock) lygčių sprendimo metodika. Iš Dirako (Dirac), Hartrio ir Foko lygčių gauta nauja kvazireliatyvistinių Hartrio ir Foko lygčių forma, kuri leidžia atsisakyti supaprastinto efektinio potencialo, o naudoti pakankamai tikslų įprastą suderintinio lauko potencialą. Kaip ir ankstesniuose darbuose, kvazireliatyvistinės Hartrio ir Foko lygtys sprendžiamos, atsižvelgiant į baigtinį branduolio tūrį. Pateikti bandomųjų skaičiavimų rezultatai kai kuriems Be, Na ir Ar izoelektroninių sekų jonams. Šitie rezultatai pakankamai gerai sutampa su tikslių reliatyvistinių Dirako, Hartrio ir Foko lygčių sprendiniais, gautais atsižvelgiant į baigtinį atomo branduolio tūrį. Paskutiniame darbo skyriuje nurodytos tolimesnės metodo plėtojimo perspektyvos.


References / Nuorodos


[1] Ch. Froese Fischer, The Hartree–Fock Method for Atoms (Wiley, New York, 1977)
[2] B. Swirles, The relativistic self-consistent field, Proc. R. Soc. London Ser. A 152, 625–649 (1935),
http://dx.doi.org/10.1098/rspa.1935.0211
[3] I.P. Grant, Relativistic self-consistent fields, Proc. Phys. Soc. 86, 523–527 (1965),
http://dx.doi.org/10.1088/0370-1328/86/3/311
[4] I.P. Grant, Relativistic calculation of atomic structures, Adv. Phys. 19, 747–811 (1970),
http://dx.doi.org/10.1080/00018737000101191
[5] R.D. Cowan and D.C. Griffin, Approximate relativistic corrections to atomic radial wave functions, J. Opt. Soc. Am. 66, 1010–1014 (1976),
http://dx.doi.org/10.1364/JOSA.66.001010
[6] D.D. Koeling and B.N. Harmon, A technique for relativistic spin-polarised calculations, J. Phys. C 10, 3107–3114 (1977),
http://dx.doi.org/10.1088/0022-3719/10/16/019
[7] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981),
http://dx.doi.org/10.1525/9780520906150
[8] P. Bogdanovich and O. Rancova, Finite-size nucleus approximation for solving quasirelativistic Hartree–Fock equations, Lithuanian J. Phys. 42(4), 257–262 (2002)
[9] P. Bogdanovich and O. Rancova, Solving quasi-relativistic equations for ns-electrons with account of the finite size of a nucleus, Lithuanian J. Phys. 43(3), 177–182 (2003)
[10] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving quasi-relativistic equations for hydrogen-like ions with account of the finite size of a nucleus, Nucl. Instrum. Methods B 235, 145–148 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.162
[11] J.P. Desclaux, A multiconfiguration relativistic Dirac–Fock program, Comput. Phys. Commun. 9, 31–45 (1975),
http://dx.doi.org/10.1016/0010-4655(75)90054-5
[12] M.H. Cheng, B. Crasemann, M. Aoyagi, K.-N. Huang, and H. Market, Theoretical atomic inner-shell energy levels, 70 ≤ Z ≤ 106, At. Data Nucl. Data Tables 26, 561–574 (1981),
http://dx.doi.org/10.1016/0092-640X(81)90006-1
[13] T.W.R. Johnson and K.T. Cheng, Relativistic and quantum electrodynamic effects on atomic inner shells, in: Atomic Inner-Shell Physics, ed. B. Crasemann (Plenum Press, New York – London, 1985),
http://dx.doi.org/10.1007/978-1-4613-2417-1_1
[14] Ch. Froese Fischer, A general Hartree–Fock program, Comput. Phys. Commun. 43, 355–363 (1987),
http://dx.doi.org/10.1016/0010-4655(87)90053-1
[15] K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P. Plummer, GRASP: A general-purpose relativistic atomic structure program, Comput. Phys. Commun. 55, 425–456 (1989),
http://dx.doi.org/10.1016/0010-4655(89)90136-7