[PDF]
http://dx.doi.org/10.3952/lithjphys.46203
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 153–161 (2006)
ANOTHER FORM OF
QUASI-RELATIVISTIC HARTREE–FOCK EQUATIONS
P. Bogdanovich and O. Rancova
Institute of Theoretical Physics and Astronomy of Vilnius
University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavlas@itpa.lt
Received 9 December 2005
The present work is a continuation of the
development of techniques for solving the quasi-relativistic
Hartree–Fock equations. The equations were formed anew out of
Dirac–Hartree–Fock equations in the shape that allowed one to use
the conventional rather accurate self-consistent field potential
instead of a simplified effective potential. The method is
implemented in computer programs and the test results are
presented for some ions of the Be, Ne, and Ar isoelectronic
sequences. The results are in good coincidence with the results
obtained by solving the relativistic Dirac–Hartree–Fock equations.
Keywords: quasi-relativistic Hartree–Fock equations
PACS: 31.15.Ne, 21.10.Ft
KITAS KVAZIRELIATYVISTINIŲ
HARTRIO IR FOKO LYGČIŲ PAVIDALAS
. P. Bogdanovičius, O. Rancova
VU Teorinės fizikos ir astronomijos institutas, Vilnius,
Lietuva
Toliau plėtojama kvazireliatyvistinių Hartrio
(Hartree) ir Foko (Fock) lygčių sprendimo metodika. Iš Dirako
(Dirac), Hartrio ir Foko lygčių gauta nauja kvazireliatyvistinių
Hartrio ir Foko lygčių forma, kuri leidžia atsisakyti
supaprastinto efektinio potencialo, o naudoti pakankamai tikslų
įprastą suderintinio lauko potencialą. Kaip ir ankstesniuose
darbuose, kvazireliatyvistinės Hartrio ir Foko lygtys
sprendžiamos, atsižvelgiant į baigtinį branduolio tūrį. Pateikti
bandomųjų skaičiavimų rezultatai kai kuriems Be, Na ir Ar
izoelektroninių sekų jonams. Šitie rezultatai pakankamai gerai
sutampa su tikslių reliatyvistinių Dirako, Hartrio ir Foko lygčių
sprendiniais, gautais atsižvelgiant į baigtinį atomo branduolio
tūrį. Paskutiniame darbo skyriuje nurodytos tolimesnės metodo
plėtojimo perspektyvos.
References / Nuorodos
[1] Ch. Froese Fischer, The Hartree–Fock Method for Atoms
(Wiley, New York, 1977)
[2] B. Swirles, The relativistic self-consistent field, Proc. R.
Soc. London Ser. A 152, 625–649 (1935),
http://dx.doi.org/10.1098/rspa.1935.0211
[3] I.P. Grant, Relativistic self-consistent fields, Proc. Phys.
Soc. 86, 523–527 (1965),
http://dx.doi.org/10.1088/0370-1328/86/3/311
[4] I.P. Grant, Relativistic calculation of atomic structures, Adv.
Phys. 19, 747–811 (1970),
http://dx.doi.org/10.1080/00018737000101191
[5] R.D. Cowan and D.C. Griffin, Approximate relativistic
corrections to atomic radial wave functions, J. Opt. Soc. Am. 66,
1010–1014 (1976),
http://dx.doi.org/10.1364/JOSA.66.001010
[6] D.D. Koeling and B.N. Harmon, A technique for relativistic
spin-polarised calculations, J. Phys. C 10, 3107–3114
(1977),
http://dx.doi.org/10.1088/0022-3719/10/16/019
[7] R.D. Cowan, The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, 1981),
http://dx.doi.org/10.1525/9780520906150
[8] P. Bogdanovich and O. Rancova, Finite-size nucleus approximation
for solving quasirelativistic Hartree–Fock equations, Lithuanian J.
Phys. 42(4), 257–262 (2002)
[9] P. Bogdanovich and O. Rancova, Solving quasi-relativistic
equations for ns-electrons with account of the finite size
of a nucleus, Lithuanian J. Phys. 43(3), 177–182 (2003)
[10] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving
quasi-relativistic equations for hydrogen-like ions with account of
the finite size of a nucleus, Nucl. Instrum. Methods B 235,
145–148 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.162
[11] J.P. Desclaux, A multiconfiguration relativistic Dirac–Fock
program, Comput. Phys. Commun. 9, 31–45 (1975),
http://dx.doi.org/10.1016/0010-4655(75)90054-5
[12] M.H. Cheng, B. Crasemann, M. Aoyagi, K.-N. Huang, and H.
Market, Theoretical atomic inner-shell energy levels, 70 ≤ Z
≤ 106, At. Data Nucl. Data Tables 26, 561–574 (1981),
http://dx.doi.org/10.1016/0092-640X(81)90006-1
[13] T.W.R. Johnson and K.T. Cheng, Relativistic and quantum
electrodynamic effects on atomic inner shells, in: Atomic
Inner-Shell Physics, ed. B. Crasemann (Plenum Press, New York
– London, 1985),
http://dx.doi.org/10.1007/978-1-4613-2417-1_1
[14] Ch. Froese Fischer, A general Hartree–Fock program, Comput.
Phys. Commun. 43, 355–363 (1987),
http://dx.doi.org/10.1016/0010-4655(87)90053-1
[15] K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P.
Plummer, GRASP: A general-purpose relativistic atomic structure
program, Comput. Phys. Commun. 55, 425–456 (1989),
http://dx.doi.org/10.1016/0010-4655(89)90136-7